PUT
Abstract:We present a new framework called KorraAI for conceiving and building embodied conversational agents (ECAs). Our framework models ECAs' behavior considering contextual information, for example, about environment and interaction time, and uncertain information provided by the human interaction partner. Moreover, agents built with KorraAI can show proactive behavior, as they can initiate interactions with human partners. For these purposes, KorraAI exploits probabilistic programming. Probabilistic models in KorraAI are used to model its behavior and interactions with the user. They enable adaptation to the user's preferences and a certain degree of indeterminism in the ECAs to achieve more natural behavior. Human-like internal states, such as moods, preferences, and emotions (e.g., surprise), can be modeled in KorraAI with distributions and Bayesian networks. These models can evolve over time, even without interaction with the user. ECA models are implemented as plugins and share a common interface. This enables ECA designers to focus more on the character they are modeling and less on the technical details, as well as to store and exchange ECA models. Several applications of KorraAI ECAs are possible, such as virtual sales agents, customer service agents, virtual companions, entertainers, or tutors.
Abstract:Low information transfer rate is a major bottleneck for brain-computer interfaces based on non-invasive electroencephalography (EEG) for clinical applications. This led to the development of more robust and accurate classifiers. In this study, we investigate the performance of quantum-enhanced support vector classifier (QSVC). Training (predicting) balanced accuracy of QSVC was 83.17 (50.25) %. This result shows that the classifier was able to learn from EEG data, but that more research is required to obtain higher predicting accuracy. This could be achieved by a better configuration of the classifier, such as increasing the number of shots.