Abstract:Multi-class cell detection and counting is an essential task for many pathological diagnoses. Manual counting is tedious and often leads to inter-observer variations among pathologists. While there exist multiple, general-purpose, deep learning-based object detection and counting methods, they may not readily transfer to detecting and counting cells in medical images, due to the limited data, presence of tiny overlapping objects, multiple cell types, severe class-imbalance, minute differences in size/shape of cells, etc. In response, we propose guided posterior regularization (DeGPR), which assists an object detector by guiding it to exploit discriminative features among cells. The features may be pathologist-provided or inferred directly from visual data. We validate our model on two publicly available datasets (CoNSeP and MoNuSAC), and on MuCeD, a novel dataset that we contribute. MuCeD consists of 55 biopsy images of the human duodenum for predicting celiac disease. We perform extensive experimentation with three object detection baselines on three datasets to show that DeGPR is model-agnostic, and consistently improves baselines obtaining up to 9% (absolute) mAP gains.
Abstract:Contrastive Learning (CL) is a recent representation learning approach, which encourages inter-class separability and intra-class compactness in learned image representations. Since medical images often contain multiple semantic classes in an image, using CL to learn representations of local features (as opposed to global) is important. In this work, we present a novel semi-supervised 2D medical segmentation solution that applies CL on image patches, instead of full images. These patches are meaningfully constructed using the semantic information of different classes obtained via pseudo labeling. We also propose a novel consistency regularization (CR) scheme, which works in synergy with CL. It addresses the problem of confirmation bias, and encourages better clustering in the feature space. We evaluate our method on four public medical segmentation datasets and a novel histopathology dataset that we introduce. Our method obtains consistent improvements over state-of-the-art semi-supervised segmentation approaches for all datasets.