Abstract:Although numerous machine learning models exist to detect issues like rolling bearing strain and deformation, typically caused by improper mounting, overloading, or poor lubrication, these models often struggle to isolate faults from the noise of real-world operational and environmental variability. Conditions such as variable loads, high temperatures, stress, and rotational speeds can mask early signs of failure, making reliable detection challenging. To address these limitations, this work proposes a continual deep learning approach capable of learning across domains that share underlying structure over time. This approach goes beyond traditional accuracy metrics by addressing four second-order challenges: catastrophic forgetting (where new learning overwrites past knowledge), lack of plasticity (where models fail to adapt to new data), forward transfer (using past knowledge to improve future learning), and backward transfer (refining past knowledge with insights from new domains). The method comprises a feature generator and domain-specific classifiers, allowing capacity to grow as new domains emerge with minimal interference, while an experience replay mechanism selectively revisits prior domains to mitigate forgetting. Moreover, nonlinear dependencies across domains are exploited by prioritizing replay from those with the highest prior errors, refining models based on most informative past experiences. Experiments show high average domain accuracy (up to 88.96%), with forgetting measures as low as .0027 across non-stationary class-incremental environments.
Abstract:The integration of advanced sensor technologies with deep learning algorithms has revolutionized fault diagnosis in railway systems, particularly at the wheel-track interface. Although numerous models have been proposed to detect irregularities such as wheel out-of-roundness, they often fall short in real-world applications due to the dynamic and nonstationary nature of railway operations. This paper introduces BOLT-RM (Boosting-inspired Online Learning with Transfer for Railway Maintenance), a model designed to address these challenges using continual learning for predictive maintenance. By allowing the model to continuously learn and adapt as new data become available, BOLT-RM overcomes the issue of catastrophic forgetting that often plagues traditional models. It retains past knowledge while improving predictive accuracy with each new learning episode, using a boosting-like knowledge sharing mechanism to adapt to evolving operational conditions such as changes in speed, load, and track irregularities. The methodology is validated through comprehensive multi-domain simulations of train-track dynamic interactions, which capture realistic railway operating conditions. The proposed BOLT-RM model demonstrates significant improvements in identifying wheel anomalies, establishing a reliable sequence for maintenance interventions.
Abstract:This literature review explores continual learning methods for on-device training in the context of neural networks (NNs) and decision trees (DTs) for classification tasks on smart environments. We highlight key constraints, such as data architecture (batch vs. stream) and network capacity (cloud vs. edge), which impact TinyML algorithm design, due to the uncontrolled natural arrival of data streams. The survey details the challenges of deploying deep learners on resource-constrained edge devices, including catastrophic forgetting, data inefficiency, and the difficulty of handling IoT tabular data in open-world settings. While decision trees are more memory-efficient for on-device training, they are limited in expressiveness, requiring dynamic adaptations, like pruning and meta-learning, to handle complex patterns and concept drifts. We emphasize the importance of multi-criteria performance evaluation tailored to edge applications, which assess both output-based and internal representation metrics. The key challenge lies in integrating these building blocks into autonomous online systems, taking into account stability-plasticity trade-offs, forward-backward transfer, and model convergence.
Abstract:State-of-the-art data stream mining in supervised classification has traditionally relied on ensembles of incremental decision trees. However, the emergence of large tabular models, i.e., transformers designed for structured numerical data, marks a significant paradigm shift. These models move beyond traditional weight updates, instead employing in-context learning through prompt tuning. By using on-the-fly sketches to summarize unbounded streaming data, one can feed this information into a pre-trained model for efficient processing. This work bridges advancements from both areas, highlighting how transformers' implicit meta-learning abilities, pre-training on drifting natural data, and reliance on context optimization directly address the core challenges of adaptive learning in dynamic environments. Exploring real-time model adaptation, this research demonstrates that TabPFN, coupled with a simple sliding memory strategy, consistently outperforms ensembles of Hoeffding trees across all non-stationary benchmarks. Several promising research directions are outlined in the paper. The authors urge the community to explore these ideas, offering valuable opportunities to advance in-context stream learning.
Abstract:The Internet of Things generates massive data streams, with edge computing emerging as a key enabler for online IoT applications and 5G networks. Edge solutions facilitate real-time machine learning inference, but also require continuous adaptation to concept drifts. Ensemble-based solutions improve predictive performance, but incur higher resource consumption, latency, and memory demands. This paper presents DFDT: Dynamic Fast Decision Tree, a novel algorithm designed for energy-efficient memory-constrained data stream mining. DFDT improves hoeffding tree growth efficiency by dynamically adjusting grace periods, tie thresholds, and split evaluations based on incoming data. It incorporates stricter evaluation rules (based on entropy, information gain, and leaf instance count), adaptive expansion modes, and a leaf deactivation mechanism to manage memory, allowing more computation on frequently visited nodes while conserving energy on others. Experiments show that the proposed framework can achieve increased predictive performance (0.43 vs 0.29 ranking) with constrained memory and a fraction of the runtime of VFDT or SVFDT.