Abstract:This literature review explores continual learning methods for on-device training in the context of neural networks (NNs) and decision trees (DTs) for classification tasks on smart environments. We highlight key constraints, such as data architecture (batch vs. stream) and network capacity (cloud vs. edge), which impact TinyML algorithm design, due to the uncontrolled natural arrival of data streams. The survey details the challenges of deploying deep learners on resource-constrained edge devices, including catastrophic forgetting, data inefficiency, and the difficulty of handling IoT tabular data in open-world settings. While decision trees are more memory-efficient for on-device training, they are limited in expressiveness, requiring dynamic adaptations, like pruning and meta-learning, to handle complex patterns and concept drifts. We emphasize the importance of multi-criteria performance evaluation tailored to edge applications, which assess both output-based and internal representation metrics. The key challenge lies in integrating these building blocks into autonomous online systems, taking into account stability-plasticity trade-offs, forward-backward transfer, and model convergence.
Abstract:The Internet of Things generates massive data streams, with edge computing emerging as a key enabler for online IoT applications and 5G networks. Edge solutions facilitate real-time machine learning inference, but also require continuous adaptation to concept drifts. Ensemble-based solutions improve predictive performance, but incur higher resource consumption, latency, and memory demands. This paper presents DFDT: Dynamic Fast Decision Tree, a novel algorithm designed for energy-efficient memory-constrained data stream mining. DFDT improves hoeffding tree growth efficiency by dynamically adjusting grace periods, tie thresholds, and split evaluations based on incoming data. It incorporates stricter evaluation rules (based on entropy, information gain, and leaf instance count), adaptive expansion modes, and a leaf deactivation mechanism to manage memory, allowing more computation on frequently visited nodes while conserving energy on others. Experiments show that the proposed framework can achieve increased predictive performance (0.43 vs 0.29 ranking) with constrained memory and a fraction of the runtime of VFDT or SVFDT.