Abstract:Several physics and engineering applications involve the solution of a minimisation problem to compute an approximation of the input signal. Modern computing hardware and software apply high-performance computing to solve and considerably reduce the execution time. We compare and analyse different minimisation methods in terms of functional computation, convergence, execution time, and scalability properties, for the solution of two minimisation problems (i.e., approximation and denoising) with different constraints that involve computationally expensive operations. These problems are attractive due to their numerical and analytical properties, and our general analysis can be extended to most signal-processing problems. We perform our tests on the Cineca Marconi100 cluster, at the 26th position in the top500 list. Our experimental results show that PRAXIS is the best optimiser in terms of minima computation: the efficiency of the approximation is 38% with 256 processes, while the denoising has 46% with 32 processes.
Abstract:Several applications require the super-resolution of noisy images and the preservation of geometrical and texture features. State-of-the-art super-resolution methods do not account for noise and generally enhance the output image's artefacts (e.g., aliasing, blurring). We propose a learning-based method that accounts for the presence of noise and preserves the properties of the input image, as measured by quantitative metrics (e.g., normalised crossed correlation, normalised mean squared error, peak-signal-to-noise-ration, structural similarity feature-based similarity, universal image quality). We train our network to up-sample a low-resolution noisy image while preserving its properties. We perform our tests on the Cineca Marconi100 cluster, at the 26th position in the top500 list. The experimental results show that our method outperforms learning-based methods, has comparable results with standard methods, preserves the properties of the input image as contours, brightness, and textures, and reduces the artefacts. As average quantitative metrics, our method has a PSNR value of 23.81 on the super-resolution of Gaussian noise images with a 2X up-sampling factor. In contrast, previous work has a PSNR value of 23.09 (standard method) and 21.78 (learning-based method). Our learning-based and quality-preserving super-resolution improves the high-resolution prediction of noisy images with respect to state-of-the-art methods with different noise types and up-sampling factors.
Abstract:The study and development of innovative solutions for the advanced visualisation, representation and analysis of medical images offer different research directions. Current practice in medical imaging consists in combining real-time US with imaging modalities that allow internal anatomy acquisitions, such as CT, MRI, PET or similar. Application of image-fusion approaches can be found in tracking surgical tools and/or needles, in real-time during interventions. Thus, this work proposes a fusion imaging system for the registration of CT and MRI images with real-time US acquisition leveraging a 3D camera sensor. The main focus of the work is the portability of the system and its applicability to different anatomical districts.
Abstract:This work addresses the patient-specific characterisation of the morphology and pathologies of muscle-skeletal districts (e.g., wrist, spine) to support diagnostic activities and follow-up exams through the integration of morphological and tissue information. We propose different methods for the integration of morphological information, retrieved from the geometrical analysis of 3D surface models, with tissue information extracted from volume images. For the qualitative and quantitative validation, we will discuss the localisation of bone erosion sites on the wrists to monitor rheumatic diseases and the characterisation of the three functional regions of the spinal vertebrae to study the presence of osteoporotic fractures. The proposed approach supports the quantitative and visual evaluation of possible damages, surgery planning, and early diagnosis or follow-up studies. Finally, our analysis is general enough to be applied to different districts.
Abstract:We propose a novel deep-learning framework for super-resolution ultrasound images and videos in terms of spatial resolution and line reconstruction. We up-sample the acquired low-resolution image through a vision-based interpolation method; then, we train a learning-based model to improve the quality of the up-sampling. We qualitatively and quantitatively test our model on different anatomical districts (e.g., cardiac, obstetric) images and with different up-sampling resolutions (i.e., 2X, 4X). Our method improves the PSNR median value with respect to SOTA methods of $1.7\%$ on obstetric 2X raw images, $6.1\%$ on cardiac 2X raw images, and $4.4\%$ on abdominal raw 4X images; it also improves the number of pixels with a low prediction error of $9.0\%$ on obstetric 4X raw images, $5.2\%$ on cardiac 4X raw images, and $6.2\%$ on abdominal 4X raw images. The proposed method is then applied to the spatial super-resolution of 2D videos, by optimising the sampling of lines acquired by the probe in terms of the acquisition frequency. Our method specialises trained networks to predict the high-resolution target through the design of the network architecture and the loss function, taking into account the anatomical district and the up-sampling factor and exploiting a large ultrasound data set. The use of deep learning on large data sets overcomes the limitations of vision-based algorithms that are general and do not encode the characteristics of the data. Furthermore, the data set can be enriched with images selected by medical experts to further specialise the individual networks. Through learning and high-performance computing, our super-resolution is specialised to different anatomical districts by training multiple networks. Furthermore, the computational demand is shifted to centralised hardware resources with a real-time execution of the network's prediction on local devices.
Abstract:The introduction of Information and Communication Technology (ICT) in transportation systems leads to several advantages (efficiency of transport, mobility, traffic management). However, it may bring some drawbacks in terms of increasing security challenges, also related to human behaviour. As an example , in the last decades attempts to characterize drivers' behaviour have been mostly targeted. This paper presents Secure Routine, a paradigm that uses driver's habits to driver identification and, in particular, to distinguish the vehicle's owner from other drivers. We evaluate Secure Routine in combination with other three existing research works based on machine learning techniques. Results are measured using well-known metrics and show that Secure Routine outperforms the compared works.
Abstract:Ultrasound images are widespread in medical diagnosis for muscle-skeletal, cardiac, and obstetrical diseases, due to the efficiency and non-invasiveness of the acquisition methodology. However, ultrasound acquisition introduces a speckle noise in the signal, that corrupts the resulting image and affects further processing operations, and the visual analysis that medical experts conduct to estimate patient diseases. Our main goal is to define a universal deep learning framework for real-time denoising of ultrasound images. We analyse and compare state-of-the-art methods for the smoothing of ultrasound images (e.g., spectral, low-rank, and deep learning denoising algorithms), in order to select the best one in terms of accuracy, preservation of anatomical features, and computational cost. Then, we propose a tuned version of the selected state-of-the-art denoising methods (e.g., WNNM), to improve the quality of the denoised images, and extend its applicability to ultrasound images. To handle large data sets of ultrasound images with respect to applications and industrial requirements, we introduce a denoising framework that exploits deep learning and HPC tools, and allows us to replicate the results of state-of-the-art denoising methods in a real-time execution.
Abstract:Data are represented as graphs in a wide range of applications, such as Computer Vision (e.g., images) and Graphics (e.g., 3D meshes), network analysis (e.g., social networks), and bio-informatics (e.g., molecules). In this context, our overall goal is the definition of novel Fourier-based and graph filters induced by rational polynomials for graph processing, which generalise polynomial filters and the Fourier transform to non-Euclidean domains. For the efficient evaluation of discrete spectral Fourier-based and wavelet operators, we introduce a spectrum-free approach, which requires the solution of a small set of sparse, symmetric, well-conditioned linear systems and is oblivious of the evaluation of the Laplacian or kernel spectrum. Approximating arbitrary graph filters with rational polynomials provides a more accurate and numerically stable alternative with respect to polynomials. To achieve these goals, we also study the link between spectral operators, wavelets, and filtered convolution with integral operators induced by spectral kernels. According to our tests, main advantages of the proposed approach are (i) its generality with respect to the input data (e.g., graphs, 3D shapes), applications (e.g., signal reconstruction and smoothing, shape correspondence), and filters (e.g., polynomial, rational polynomial), and (ii) a spectrum-free computation with a generally low computational cost and storage overhead.
Abstract:Semantic segmentation methods have achieved outstanding performance thanks to deep learning. Nevertheless, when such algorithms are deployed to new contexts not seen during training, it is necessary to collect and label scene-specific data in order to adapt them to the new domain using fine-tuning. This process is required whenever an already installed camera is moved or a new camera is introduced in a camera network due to the different scene layouts induced by the different viewpoints. To limit the amount of additional training data to be collected, it would be ideal to train a semantic segmentation method using labeled data already available and only unlabeled data coming from the new camera. We formalize this problem as a domain adaptation task and introduce a novel dataset of urban scenes with the related semantic labels. As a first approach to address this challenging task, we propose SceneAdapt, a method for scene adaptation of semantic segmentation algorithms based on adversarial learning. Experiments and comparisons with state-of-the-art approaches to domain adaptation highlight that promising performance can be achieved using adversarial learning both when the two scenes have different but points of view, and when they comprise images of completely different scenes. To encourage research on this topic, we made our code available at our web page: https://iplab.dmi.unict.it/ParkSmartSceneAdaptation/.