Abstract:Quantum Machine Learning (QML) is considered one of the most promising applications of Quantum Computing in the Noisy Intermediate Scale Quantum (NISQ) era for the impact it is thought to have in the near future. Although promising theoretical assumptions, the exploration of how QML could foster new discoveries in Medicine and Biology fields is still in its infancy with few examples. In this study, we aimed to assess whether Quantum Kernels (QK) could effectively classify subtypes of Breast Cancer (BC) patients on the basis of molecular characteristics. We performed an heuristic exploration of encoding configurations with different entanglement levels to determine a trade-off between kernel expressivity and performances. Our results show that QKs yield comparable clustering results with classical methods while using fewer data points, and are able to fit the data with a higher number of clusters. Additionally, we conducted the experiments on the Quantum Processing Unit (QPU) to evaluate the effect of noise on the outcome. We found that less expressive encodings showed a higher resilience to noise, indicating that the computational pipeline can be reliably implemented on the NISQ devices. Our findings suggest that QK methods show promises for application in Precision Oncology, especially in scenarios where the dataset is limited in size and a granular non-trivial stratification of complex molecular data cannot be achieved classically.
Abstract:Hybrid quantum-classical classifiers promise to positively impact critical aspects of natural language processing tasks, particularly classification-related ones. Among the possibilities currently investigated, quantum transfer learning, i.e., using a quantum circuit for fine-tuning pre-trained classical models for a specific task, is attracting significant attention as a potential platform for proving quantum advantage. This work shows potential advantages, both in terms of performance and expressiveness, of quantum transfer learning algorithms trained on embedding vectors extracted from a large language model to perform classification on a classical Linguistics task: acceptability judgments. Acceptability judgment is the ability to determine whether a sentence is considered natural and well-formed by a native speaker. The approach has been tested on sentences extracted from ItaCoLa, a corpus that collects Italian sentences labeled with their acceptability judgment. The evaluation phase shows results for the quantum transfer learning pipeline comparable to state-of-the-art classical transfer learning algorithms, proving current quantum computers' capabilities to tackle NLP tasks for ready-to-use applications. Furthermore, a qualitative linguistic analysis, aided by explainable AI methods, reveals the capabilities of quantum transfer learning algorithms to correctly classify complex and more structured sentences, compared to their classical counterpart. This finding sets the ground for a quantifiable quantum advantage in NLP in the near future.