Abstract:Deep learning methods in LiDAR-based archaeological research often leverage visualisation techniques derived from Digital Elevation Models to enhance characteristics of archaeological objects present in the images. This paper investigates the impact of visualisations on deep learning performance through a comprehensive testing framework. The study involves the use of eight semantic segmentation models to evaluate seven diverse visualisations across two study areas, encompassing five archaeological classes. Experimental results reveal that the choice of appropriate visualisations can influence performance by up to 8%. Yet, pinpointing one visualisation that outperforms the others in segmenting all archaeological classes proves challenging. The observed performance variation, reaching up to 25% across different model configurations, underscores the importance of thoughtfully selecting model configurations and LiDAR visualisations for successfully segmenting archaeological objects.
Abstract:Hyperspectral data recorded from satellite platforms are often ill-suited for geo-archaeological prospection due to low spatial resolution. The established potential of hyperspectral data from airborne sensors in identifying archaeological features has, on the other side, generated increased interest in enhancing hyperspectral data to achieve higher spatial resolution. This improvement is crucial for detecting traces linked to sub-surface geo-archaeological features and can make satellite hyperspectral acquisitions more suitable for archaeological research. This research assesses the usability of pansharpened PRISMA satellite products in geo-archaeological prospections. Three pan-sharpening methods (GSA, MTF-GLP and HySure) are compared quantitatively and qualitatively and tested over the archaeological landscape of Aquileia (Italy). The results suggest that the application of pansharpening techniques makes hyperspectral satellite imagery highly suitable, under certain conditions, to the identification of sub-surface archaeological features of small and large size.