Abstract:A novel approach to automated learning of syntactic rules governing natural languages is proposed, based on using probabilities assigned to sentences (and potentially longer word sequences) by transformer neural network language models to guide symbolic learning processes like clustering and rule induction. This method exploits the learned linguistic knowledge in transformers, without any reference to their inner representations; hence, the technique is readily adaptable to the continuous appearance of more powerful language models. We show a proof-of-concept example of our proposed technique, using it to guide unsupervised symbolic link-grammar induction methods drawn from our prior research.
Abstract:The "Loving AI" project involves developing software enabling humanoid robots to interact with people in loving and compassionate ways, and to promote people' self-understanding and self-transcendence. Currently the project centers on the Hanson Robotics robot "Sophia" -- specifically, on supplying Sophia with personality content and cognitive, linguistic, perceptual and behavioral content aimed at enabling loving interactions supportive of human self-transcendence. In September 2017 a small pilot study was conducted, involving the Sophia robot leading human subjects through dialogues and exercises focused on meditation, visualization and relaxation. The pilot was an apparent success, qualitatively demonstrating the viability of the approach and the ability of appropriate human-robot interaction to increase human well-being and advance human consciousness.