Abstract:Automated detection of contraband items in X-ray images can significantly increase public safety, by enhancing the productivity and alleviating the mental load of security officers in airports, subways, customs/post offices, etc. The large volume and high throughput of passengers, mailed parcels, etc., during rush hours practically make it a Big Data problem. Modern computer vision algorithms relying on Deep Neural Networks (DNNs) have proven capable of undertaking this task even under resource-constrained and embedded execution scenarios, e.g., as is the case with fast, single-stage object detectors. However, no comparative experimental assessment of the various relevant DNN components/methods has been performed under a common evaluation protocol, which means that reliable cross-method comparisons are missing. This paper presents exactly such a comparative assessment, utilizing a public relevant dataset and a well-defined methodology for selecting the specific DNN components/modules that are being evaluated. The results indicate the superiority of Transformer detectors, the obsolete nature of auxiliary neural modules that have been developed in the past few years for security applications and the efficiency of the CSP-DarkNet backbone CNN.
Abstract:Automated detection of contraband items in X-ray images can significantly increase public safety, by enhancing the productivity and alleviating the mental load of security officers in airports, subways, customs/post offices, etc. The large volume and high throughput of passengers, mailed parcels, etc., during rush hours make it a Big Data analysis task. Modern computer vision algorithms relying on Deep Neural Networks (DNNs) have proven capable of undertaking this task even under resource-constrained and embedded execution scenarios, e.g., as is the case with fast, single-stage, anchor-based object detectors. This paper proposes a two-fold improvement of such algorithms for the X-ray analysis domain, introducing two complementary novelties. Firstly, more efficient anchors are obtained by hierarchical clustering the sizes of the ground-truth training set bounding boxes; thus, the resulting anchors follow a natural hierarchy aligned with the semantic structure of the data. Secondly, the default Non-Maximum Suppression (NMS) algorithm at the end of the object detection pipeline is modified to better handle occluded object detection and to reduce the number of false predictions, by inserting the Efficient Intersection over Union (E-IoU) metric into the Weighted Cluster NMS method. E-IoU provides more discriminative geometrical correlations between the candidate bounding boxes/Regions-of-Interest (RoIs). The proposed method is implemented on a common single-stage object detector (YOLOv5) and its experimental evaluation on a relevant public dataset indicates significant accuracy gains over both the baseline and competing approaches. This highlights the potential of Big Data analysis in enhancing public safety.