Abstract:Illicit object detection is a critical task performed at various high-security locations, including airports, train stations, subways, and ports. The continuous and tedious work of examining thousands of X-ray images per hour can be mentally taxing. Thus, Deep Neural Networks (DNNs) can be used to automate the X-ray image analysis process, improve efficiency and alleviate the security officers' inspection burden. The neural architectures typically utilized in relevant literature are Convolutional Neural Networks (CNNs), with Vision Transformers (ViTs) rarely employed. In order to address this gap, this paper conducts a comprehensive evaluation of relevant ViT architectures on illicit item detection in X-ray images. This study utilizes both Transformer and hybrid backbones, such as SWIN and NextViT, and detectors, such as DINO and RT-DETR. The results demonstrate the remarkable accuracy of the DINO Transformer detector in the low-data regime, the impressive real-time performance of YOLOv8, and the effectiveness of the hybrid NextViT backbone.
Abstract:Automated visual firearms classification from RGB images is an important real-world task with applications in public space security, intelligence gathering and law enforcement investigations. When applied to images massively crawled from the World Wide Web (including social media and dark Web sites), it can serve as an important component of systems that attempt to identify criminal firearms trafficking networks, by analyzing Big Data from open-source intelligence. Deep Neural Networks (DNN) are the state-of-the-art methodology for achieving this, with Convolutional Neural Networks (CNN) being typically employed. The common transfer learning approach consists of pretraining on a large-scale, generic annotated dataset for whole-image classification, such as ImageNet-1k, and then finetuning the DNN on a smaller, annotated, task-specific, downstream dataset for visual firearms classification. Neither Visual Transformer (ViT) neural architectures nor Self-Supervised Learning (SSL) approaches have been so far evaluated on this critical task. SSL essentially consists of replacing the traditional supervised pretraining objective with an unsupervised pretext task that does not require ground-truth labels..
Abstract:Automated detection of contraband items in X-ray images can significantly increase public safety, by enhancing the productivity and alleviating the mental load of security officers in airports, subways, customs/post offices, etc. The large volume and high throughput of passengers, mailed parcels, etc., during rush hours practically make it a Big Data problem. Modern computer vision algorithms relying on Deep Neural Networks (DNNs) have proven capable of undertaking this task even under resource-constrained and embedded execution scenarios, e.g., as is the case with fast, single-stage object detectors. However, no comparative experimental assessment of the various relevant DNN components/methods has been performed under a common evaluation protocol, which means that reliable cross-method comparisons are missing. This paper presents exactly such a comparative assessment, utilizing a public relevant dataset and a well-defined methodology for selecting the specific DNN components/modules that are being evaluated. The results indicate the superiority of Transformer detectors, the obsolete nature of auxiliary neural modules that have been developed in the past few years for security applications and the efficiency of the CSP-DarkNet backbone CNN.