Abstract:In this paper, we study the problem of promptly detecting the presence of non-cooperative activity from one or more Reconfigurable Intelligent Surfaces (RISs) with unknown characteristics lying in the vicinity of a Multiple-Input Multiple-Output (MIMO) communication system using Orthogonal Frequency-Division Multiplexing (OFDM) transmissions. We first present a novel wideband channel model incorporating RISs as well as non-reconfigurable stationary surfaces, which captures both the effect of the RIS actuation time on the channel in the frequency domain as well as the difference between changing phase configurations during or among transmissions. Considering that RISs may operate under the coordination of a third-party system, and thus, may negatively impact the communication of the intended MIMO OFDM system, we present a novel RIS activity detection framework that is unaware of the distribution of the phase configuration of any of the non-cooperative RISs. In particular, capitalizing on the knowledge of the data distribution at the multi-antenna receiver, we design a novel online change point detection statistic that combines a deep support vector data description model with the scan $B$-test. The presented numerical investigations demonstrate the improved detection accuracy as well as decreased computational complexity of the proposed RIS detection approach over existing change point detection schemes.
Abstract:In this paper, we focus on one centralized and one decentralized problem of active hypothesis testing in the presence of an eavesdropper. For the centralized problem including a single legitimate agent, we present a new framework based on NeuroEvolution (NE), whereas, for the decentralized problem, we develop a novel NE-based method for solving collaborative multi-agent tasks, which interestingly maintains all computational benefits of single-agent NE. The superiority of the proposed EAHT approaches over conventional active hypothesis testing policies, as well as learning-based methods, is validated through numerical investigations in an example use case of anomaly detection over wireless sensor networks.
Abstract:A combination of deep reinforcement learning and supervised learning is proposed for the problem of active sequential hypothesis testing in completely unknown environments. We make no assumptions about the prior probability, the action and observation sets, and the observation generating process. Our method can be used in any environment even if it has continuous observations or actions, and performs competitively and sometimes better than the Chernoff test, in both finite and infinite horizon problems, despite not having access to the environment dynamics.