Abstract:Varying power-infeed from converter-based generation units introduces great uncertainty on system parameters such as inertia and damping. As a consequence, system operators face increasing challenges in performing dynamic security assessment and taking real-time control actions. Exploiting the widespread deployment of phasor measurement units (PMUs) and aiming at developing a fast dynamic state and parameter estimation tool, this paper investigates the performance of Physics-Informed Neural Networks (PINN) for discovering the frequency dynamics of future power systems and monitoring the system inertia in real-time. PINNs have the potential to address challenges such as the stronger non-linearities of low-inertia systems, increased measurement noise, and limited availability of data. The estimator is demonstrated in several test cases using a 4-bus system, and compared with state of the art algorithms, such as the Unscented Kalman Filter (UKF), to assess its performance.
Abstract:This paper introduces a framework to capture previously intractable optimization constraints and transform them to a mixed-integer linear program, through the use of neural networks. We encode the feasible space of optimization problems characterized by both tractable and intractable constraints, e.g. differential equations, to a neural network. Leveraging an exact mixed-integer reformulation of neural networks, we solve mixed-integer linear programs that accurately approximate solutions to the originally intractable non-linear optimization problem. We apply our methods to the AC optimal power flow problem (AC-OPF), where directly including dynamic security constraints renders the AC-OPF intractable. Our proposed approach has the potential to be significantly more scalable than traditional approaches. We demonstrate our approach for power system operation considering N-1 security and small-signal stability, showing how it can efficiently obtain cost-optimal solutions which at the same time satisfy both static and dynamic security constraints.
Abstract:This paper introduces for the first time, to our knowledge, a framework for physics-informed neural networks in power system applications. Exploiting the underlying physical laws governing power systems, and inspired by recent developments in the field of machine learning, this paper proposes a neural network training procedure that can make use of the wide range of mathematical models describing power system behavior, both in steady-state and in dynamics. Physics-informed neural networks require substantially less training data and result in much simpler neural network structures, while achieving high accuracy. This work unlocks a range of opportunities in power systems, being able to determine dynamic states, such as rotor angles and frequency, and uncertain parameters such as inertia and damping at a fraction of the computational time required by conventional methods. This paper focuses on introducing the framework and showcases its potential using a single-machine infinite bus system as a guiding example. Physics-informed neural networks are shown to accurately determine rotor angle and frequency up to 87 times faster than conventional methods.