Abstract:In order to fully utilize spatial information for segmentation and address the challenge of handling areas with significant grayscale variations in remote sensing segmentation, we propose the SFFNet (Spatial and Frequency Domain Fusion Network) framework. This framework employs a two-stage network design: the first stage extracts features using spatial methods to obtain features with sufficient spatial details and semantic information; the second stage maps these features in both spatial and frequency domains. In the frequency domain mapping, we introduce the Wavelet Transform Feature Decomposer (WTFD) structure, which decomposes features into low-frequency and high-frequency components using the Haar wavelet transform and integrates them with spatial features. To bridge the semantic gap between frequency and spatial features, and facilitate significant feature selection to promote the combination of features from different representation domains, we design the Multiscale Dual-Representation Alignment Filter (MDAF). This structure utilizes multiscale convolutions and dual-cross attentions. Comprehensive experimental results demonstrate that, compared to existing methods, SFFNet achieves superior performance in terms of mIoU, reaching 84.80% and 87.73% respectively.The code is located at https://github.com/yysdck/SFFNet.
Abstract:Change detection as an interdisciplinary discipline in the field of computer vision and remote sensing at present has been receiving extensive attention and research. Due to the rapid development of society, the geographic information captured by remote sensing satellites is changing faster and more complex, which undoubtedly poses a higher challenge and highlights the value of change detection tasks. We propose MFDS-Net: Multi-Scale Feature Depth-Supervised Network for Remote Sensing Change Detection with Global Semantic and Detail Information (MFDS-Net) with the aim of achieving a more refined description of changing buildings as well as geographic information, enhancing the localisation of changing targets and the acquisition of weak features. To achieve the research objectives, we use a modified ResNet_34 as backbone network to perform feature extraction and DO-Conv as an alternative to traditional convolution to better focus on the association between feature information and to obtain better training results. We propose the Global Semantic Enhancement Module (GSEM) to enhance the processing of high-level semantic information from a global perspective. The Differential Feature Integration Module (DFIM) is proposed to strengthen the fusion of different depth feature information, achieving learning and extraction of differential features. The entire network is trained and optimized using a deep supervision mechanism. The experimental outcomes of MFDS-Net surpass those of current mainstream change detection networks. On the LEVIR dataset, it achieved an F1 score of 91.589 and IoU of 84.483, on the WHU dataset, the scores were F1: 92.384 and IoU: 86.807, and on the GZ-CD dataset, the scores were F1: 86.377 and IoU: 76.021. The code is available at https://github.com/AOZAKIiii/MFDS-Net