Abstract:This paper proposes teeth-photo, a new biometric modality for human authentication on mobile and hand held devices. Biometrics samples are acquired using the camera mounted on mobile device with the help of a mobile application having specific markers to register the teeth area. Region of interest (RoI) is then extracted using the markers and the obtained sample is enhanced using contrast limited adaptive histogram equalization (CLAHE) for better visual clarity. We propose a deep learning architecture and novel regularization scheme to obtain highly discriminative embedding for small size RoI. Proposed custom loss function was able to achieve perfect classification for the tiny RoI of $75\times 75$ size. The model is end-to-end and few-shot and therefore is very efficient in terms of time and energy requirements. The system can be used in many ways including device unlocking and secure authentication. To the best of our understanding, this is the first work on teeth-photo based authentication for mobile device. Experiments have been conducted on an in-house teeth-photo database collected using our application. The database is made publicly available. Results have shown that the proposed system has perfect accuracy.
Abstract:Singular points of a fingerprint image are special locations having high curvature properties. They can play a pivotal role in fingerprint normalization and reliable feature extraction. Accurate and efficient extraction of a singular point plays a major role in successful fingerprint recognition and indexing. In this paper, a novel deep learning based architecture is proposed for one shot (end-to-end) singular point detection from an input fingerprint image. The model consists of a Macro-Localization Network and a Micro-Regression Network along with three stacked hourglass as a bottleneck. The proposed model has been tested on three databases viz. FVC2002 DB1_A, FVC2002 DB2_A and FPL30K and has been found to achieve true detection rate of 98.75%, 97.5% and 92.72% respectively, which is better than any other state-of-the-art technique.