Abstract:Recent advancements in artificial intelligence have sparked interest in the parallels between large language models (LLMs) and human neural processing, particularly in language comprehension. While prior research has established similarities in the representation of LLMs and the brain, the underlying computational principles that cause this convergence, especially in the context of evolving LLMs, remain elusive. Here, we examined a diverse selection of high-performance LLMs with similar parameter sizes to investigate the factors contributing to their alignment with the brain's language processing mechanisms. We find that as LLMs achieve higher performance on benchmark tasks, they not only become more brain-like as measured by higher performance when predicting neural responses from LLM embeddings, but also their hierarchical feature extraction pathways map more closely onto the brain's while using fewer layers to do the same encoding. We also compare the feature extraction pathways of the LLMs to each other and identify new ways in which high-performing models have converged toward similar hierarchical processing mechanisms. Finally, we show the importance of contextual information in improving model performance and brain similarity. Our findings reveal the converging aspects of language processing in the brain and LLMs and offer new directions for developing models that align more closely with human cognitive processing.
Abstract:In this paper, we present StyleTTS 2, a text-to-speech (TTS) model that leverages style diffusion and adversarial training with large speech language models (SLMs) to achieve human-level TTS synthesis. StyleTTS 2 differs from its predecessor by modeling styles as a latent random variable through diffusion models to generate the most suitable style for the text without requiring reference speech, achieving efficient latent diffusion while benefiting from the diverse speech synthesis offered by diffusion models. Furthermore, we employ large pre-trained SLMs, such as WavLM, as discriminators with our novel differentiable duration modeling for end-to-end training, resulting in improved speech naturalness. StyleTTS 2 surpasses human recordings on the single-speaker LJSpeech dataset and matches it on the multispeaker VCTK dataset as judged by native English speakers. Moreover, when trained on the LibriTTS dataset, our model outperforms previous publicly available models for zero-shot speaker adaptation. This work achieves the first human-level TTS on both single and multispeaker datasets, showcasing the potential of style diffusion and adversarial training with large SLMs. The audio demos and source code are available at https://styletts2.github.io/.
Abstract:As data are generated more and more from multiple disparate sources, multiview datasets, where each sample has features in distinct views, have ballooned in recent years. However, no comprehensive package exists that enables non-specialists to use these methods easily. mvlearn, is a Python library which implements the leading multiview machine learning methods. Its simple API closely follows that of scikit-learn for increased ease-of-use. The package can be installed from Python Package Index (PyPI) or the conda package manager and is released under the Apache 2.0 open-source license. The documentation, detailed tutorials, and all releases are available at https://mvlearn.neurodata.io/.