Abstract:This paper investigates the recovery of a node-domain sparse graph signal from the output of a graph filter. This problem, often referred to as the identification of the source of a diffused sparse graph signal, is seminal in the field of graph signal processing (GSP). Sparse graph signals can be used in the modeling of a variety of real-world applications in networks, such as social, biological, and power systems, and enable various GSP tasks, such as graph signal reconstruction, blind deconvolution, and sampling. In this paper, we assume double sparsity of both the graph signal and the graph topology, as well as a low-order graph filter. We propose three algorithms to reconstruct the support set of the input sparse graph signal from the graph filter output samples, leveraging these assumptions and the generalized information criterion (GIC). First, we describe the graph multiple GIC (GM-GIC) method, which is based on partitioning the dictionary elements (graph filter matrix columns) that capture information on the signal into smaller subsets. Then, the local GICs are computed for each subset and aggregated to make a global decision. Second, inspired by the well-known branch and bound (BNB) approach, we develop the graph-based branch and bound GIC (graph-BNB-GIC), and incorporate a new tractable heuristic bound tailored to the graph and graph filter characteristics. Finally, we propose the graph-based first order correction (GFOC) method, which improves existing sparse recovery methods by iteratively examining potential improvements to the GIC cost function through replacing elements from the estimated support set with elements from their one-hop neighborhood. We conduct simulations that demonstrate that the proposed sparse recovery methods outperform existing methods in terms of support set recovery accuracy, and without a significant computational overhead.
Abstract:Graph signal processing (GSP) has emerged as a powerful tool for practical network applications, including power system monitoring. By representing power system voltages as smooth graph signals, recent research has focused on developing GSP-based methods for state estimation, attack detection, and topology identification. Included, efficient methods have been developed for detecting false data injection (FDI) attacks, which until now were perceived as non-smooth with respect to the graph Laplacian matrix. Consequently, these methods may not be effective against smooth FDI attacks. In this paper, we propose a graph FDI (GFDI) attack that minimizes the Laplacian-based graph total variation (TV) under practical constraints. In addition, we develop a low-complexity algorithm that solves the non-convex GDFI attack optimization problem using ell_1-norm relaxation, the projected gradient descent (PGD) algorithm, and the alternating direction method of multipliers (ADMM). We then propose a protection scheme that identifies the minimal set of measurements necessary to constrain the GFDI output to high graph TV, thereby enabling its detection by existing GSP-based detectors. Our numerical simulations on the IEEE-57 bus test case reveal the potential threat posed by well-designed GSP-based FDI attacks. Moreover, we demonstrate that integrating the proposed protection design with GSP-based detection can lead to significant hardware cost savings compared to previous designs of protection methods against FDI attacks.