Abstract:The meaning conveyed by a sentence often depends on the context in which it appears. Despite the progress of sentence embedding methods, it remains unclear how to best modify a sentence embedding conditioned on its context. To address this problem, we propose Condition-Aware Sentence Embeddings (CASE), an efficient and accurate method to create an embedding for a sentence under a given condition. First, CASE creates an embedding for the condition using a Large Language Model (LLM), where the sentence influences the attention scores computed for the tokens in the condition during pooling. Next, a supervised nonlinear projection is learned to reduce the dimensionality of the LLM-based text embeddings. We show that CASE significantly outperforms previously proposed Conditional Semantic Textual Similarity (C-STS) methods on an existing standard benchmark dataset. We find that subtracting the condition embedding consistently improves the C-STS performance of LLM-based text embeddings. Moreover, we propose a supervised dimensionality reduction method that not only reduces the dimensionality of LLM-based embeddings but also significantly improves their performance.
Abstract:Sentence embeddings produced by Pretrained Language Models (PLMs) have received wide attention from the NLP community due to their superior performance when representing texts in numerous downstream applications. However, the high dimensionality of the sentence embeddings produced by PLMs is problematic when representing large numbers of sentences in memory- or compute-constrained devices. As a solution, we evaluate unsupervised dimensionality reduction methods to reduce the dimensionality of sentence embeddings produced by PLMs. Our experimental results show that simple methods such as Principal Component Analysis (PCA) can reduce the dimensionality of sentence embeddings by almost $50\%$, without incurring a significant loss in performance in multiple downstream tasks. Surprisingly, reducing the dimensionality further improves performance over the original high-dimensional versions for the sentence embeddings produced by some PLMs in some tasks.