Abstract:We introduce a modified incremental learning algorithm for evolving Granular Neural Network Classifiers (eGNN-C+). We use double-boundary hyper-boxes to represent granules, and customize the adaptation procedures to enhance the robustness of outer boxes for data coverage and noise suppression, while ensuring that inner boxes remain flexible to capture drifts. The classifier evolves from scratch, incorporates new classes on the fly, and performs local incremental feature weighting. As an application, we focus on the classification of emotion-related patterns within electroencephalogram (EEG) signals. Emotion recognition is crucial for enhancing the realism and interactivity of computer systems. We extract features from the Fourier spectrum of EEG signals obtained from 28 individuals engaged in playing computer games -- a public dataset. Each game elicits a different predominant emotion: boredom, calmness, horror, or joy. We analyze individual electrodes, time window lengths, and frequency bands to assess the accuracy and interpretability of resulting user-independent neural models. The findings indicate that both brain hemispheres assist classification, especially electrodes on the temporal (T8) and parietal (P7) areas, alongside contributions from frontal and occipital electrodes. While patterns may manifest in any band, the Alpha (8-13Hz), Delta (1-4Hz), and Theta (4-8Hz) bands, in this order, exhibited higher correspondence with the emotion classes. The eGNN-C+ demonstrates effectiveness in learning EEG data. It achieves an accuracy of 81.7% and a 0.0029 II interpretability using 10-second time windows, even in face of a highly-stochastic time-varying 4-class classification problem.
Abstract:Linear dimensionality reduction techniques are powerful tools for image analysis as they allow the identification of important features in a data set. In particular, nonnegative matrix factorization (NMF) has become very popular as it is able to extract sparse, localized and easily interpretable features by imposing an additive combination of nonnegative basis elements. Nonnegative matrix underapproximation (NMU) is a closely related technique that has the advantage to identify features sequentially. In this paper, we propose a variant of NMU that is particularly well suited for image analysis as it incorporates the spatial information, that is, it takes into account the fact that neighboring pixels are more likely to be contained in the same features, and favors the extraction of localized features by looking for sparse basis elements. We show that our new approach competes favorably with comparable state-of-the-art techniques on synthetic, facial and hyperspectral image data sets.