Abstract:We present a fast algorithm for training MaxPooling Convolutional Networks to segment images. This type of network yields record-breaking performance in a variety of tasks, but is normally trained on a computationally expensive patch-by-patch basis. Our new method processes each training image in a single pass, which is vastly more efficient. We validate the approach in different scenarios and report a 1500-fold speed-up. In an application to automated steel defect detection and segmentation, we obtain excellent performance with short training times.
Abstract:We present a Multi-Scale Pyramidal Pooling Network, featuring a novel pyramidal pooling layer at multiple scales and a novel encoding layer. Thanks to the former the network does not require all images of a given classification task to be of equal size. The encoding layer improves generalisation performance in comparison to similar neural network architectures, especially when training data is scarce. We evaluate and compare our system to convolutional neural networks and state-of-the-art computer vision methods on various benchmark datasets. We also present results on industrial steel defect classification, where existing architectures are not applicable because of the constraint on equally sized input images. The proposed architecture can be seen as a fully supervised hierarchical bag-of-features extension that is trained online and can be fine-tuned for any given task.