Abstract:Human migration patterns influence the redistribution of population characteristics over the geography and since such distributions are closely related to social and economic outcomes, investigating the structure and dynamics of internal migration plays a crucial role in understanding and designing policies for such systems. We provide an in-depth investigation into the structure and dynamics of the internal migration in Turkey from 2008 to 2020. We identify a set of classical migration laws and examine them via various methods for signed network analysis, ego network analysis, representation learning, temporal stability analysis, community detection, and network visualization. The findings show that, in line with the classical migration laws, most migration links are geographically bounded with several exceptions involving cities with large economic activity, major migration flows are countered with migration flows in the opposite direction, there are well-defined migration routes, and the migration system is generally stable over the investigated period. Apart from these general results, we also provide unique and specific insights into Turkey. Overall, the novel toolset we employ for the first time in the literature allows the investigation of selected migration laws from a complex networks perspective and sheds light on future migration research on different geographies.
Abstract:Deep-learning based computer vision models have proved themselves to be ground-breaking approaches to human activity recognition (HAR). However, most existing works are dedicated to improve the prediction accuracy through either creating new model architectures, increasing model complexity, or refining model parameters by training on larger datasets. Here, we propose an alternative idea, differing from existing work, to increase model accuracy and also to shape model predictions to align with human understandings through automatically creating higher-level summarizing labels for similar groups of human activities. First, we argue the importance and feasibility of constructing a hierarchical labeling system for human activity recognition. Then, we utilize the predictions of a black box HAR model to identify similarities between different activities. Finally, we tailor hierarchical clustering methods to automatically generate hierarchical trees of activities and conduct experiments. In this system, the activity labels on the same level will have a designed magnitude of accuracy and reflect a specific amount of activity details. This strategy enables a trade-off between the extent of the details in the recognized activity and the user privacy by masking some sensitive predictions; and also provides possibilities for the use of formerly prohibited invasive models in privacy-concerned scenarios. Since the hierarchy is generated from the machine's perspective, the predictions at the upper levels provide better accuracy, which is especially useful when there are too detailed labels in the training set that are rather trivial to the final prediction goal. Moreover, the analysis of the structure of these trees can reveal the biases in the prediction model and guide future data collection strategies.
Abstract:Representation learning (RL) methods learn objects' latent embeddings where information is preserved by distances. Since distances are invariant to certain linear transformations, one may obtain different embeddings while preserving the same information. In dynamic systems, a temporal difference in embeddings may be explained by the stability of the system or by the misalignment of embeddings due to arbitrary transformations. In the literature, embedding alignment has not been defined formally, explored theoretically, or analyzed empirically. Here, we explore the embedding alignment and its parts, provide the first formal definitions, propose novel metrics to measure alignment and stability, and show their suitability through synthetic experiments. Real-world experiments show that both static and dynamic RL methods are prone to produce misaligned embeddings and such misalignment worsens the performance of dynamic network inference tasks. By ensuring alignment, the prediction accuracy raises by up to 90% in static and by 40% in dynamic RL methods.