Abstract:Systems for synthesizer sound matching, which automatically set the parameters of a synthesizer to emulate an input sound, have the potential to make the process of synthesizer programming faster and easier for novice and experienced musicians alike, whilst also affording new means of interaction with synthesizers. Considering the enormous variety of synthesizers in the marketplace, and the complexity of many of them, general-purpose sound matching systems that function with minimal knowledge or prior assumptions about the underlying synthesis architecture are particularly desirable. With this in mind, we introduce a synthesizer sound matching model based on the Audio Spectrogram Transformer. We demonstrate the viability of this model by training on a large synthetic dataset of randomly generated samples from the popular Massive synthesizer. We show that this model can reconstruct parameters of samples generated from a set of 16 parameters, highlighting its improved fidelity relative to multi-layer perceptron and convolutional neural network baselines. We also provide audio examples demonstrating the out-of-domain model performance in emulating vocal imitations, and sounds from other synthesizers and musical instruments.
Abstract:In this paper, we propose and investigate the use of neural audio codec language models for the automatic generation of sample-based musical instruments based on text or reference audio prompts. Our approach extends a generative audio framework to condition on pitch across an 88-key spectrum, velocity, and a combined text/audio embedding. We identify maintaining timbral consistency within the generated instruments as a major challenge. To tackle this issue, we introduce three distinct conditioning schemes. We analyze our methods through objective metrics and human listening tests, demonstrating that our approach can produce compelling musical instruments. Specifically, we introduce a new objective metric to evaluate the timbral consistency of the generated instruments and adapt the average Contrastive Language-Audio Pretraining (CLAP) score for the text-to-instrument case, noting that its naive application is unsuitable for assessing this task. Our findings reveal a complex interplay between timbral consistency, the quality of generated samples, and their correspondence to the input prompt.