Abstract:We define a congruence that copes with null next-symbol probabilities that arise when the output of a language model is constrained by some means during text generation. We develop an algorithm for efficiently learning the quotient with respect to this congruence and evaluate it on case studies for analyzing statistical properties of LLM.
Abstract:We propose a new active learning algorithm for PDFA based on three main aspects: a congruence over states which takes into account next-symbol probability distributions, a quantization that copes with differences in distributions, and an efficient tree-based data structure. Experiments showed significant performance gains with respect to reference implementations.