Abstract:We present quasicyclic principal component analysis (QPCA), a generalization of principal component analysis (PCA), that determines an optimized basis for a dataset in terms of families of shift-orthogonal principal vectors. This is of particular interest when analyzing cyclostationary data, whose cyclic structure is not exploited by the standard PCA algorithm. We first formulate QPCA as an optimization problem, which we show may be decomposed into a series of PCA problems in the frequency domain. We then formalize our solution as an explicit algorithm and analyze its computational complexity. Finally, we provide some examples of applications of QPCA to cyclostationary signal processing data, including an investigation of carrier pulse recovery, a presentation of methods for estimating an unknown oversampling rate, and a discussion of an appropriate approach for pre-processing data with a non-integer oversampling rate in order to better apply the QPCA algorithm.
Abstract:A new direct-detection-compatible signalling scheme is proposed for fiber-optic communication over short distances. Controlled inter-symbol interference is exploited to extract phase information, thereby achieving data rates within one bit per channel-use of those of a coherent detector.