Abstract:The growing and evolving landscape of cybersecurity threats necessitates the development of supporting tools and platforms that allow for the creation of realistic IT environments operating within virtual, controlled settings as Cyber Ranges (CRs). CRs can be exploited for analyzing vulnerabilities and experimenting with the effectiveness of devised countermeasures, as well as serving as training environments for building cyber security skills and abilities for IT operators. This paper proposes ARCeR as an innovative solution for the automatic generation and deployment of CRs, starting from user-provided descriptions in a natural language. ARCeR relies on the Agentic RAG paradigm, which allows it to fully exploit state-of-art AI technologies. Experimental results show that ARCeR is able to successfully process prompts even in cases that LLMs or basic RAG systems are not able to cope with. Furthermore, ARCeR is able to target any CR framework provided that specific knowledge is made available to it.
Abstract:Deep learning approaches for jet tagging in high-energy physics are characterized as black boxes that process a large amount of information from which it is difficult to extract key distinctive observables. In this proceeding, we present an alternative to deep learning approaches, Boost Invariant Polynomials, which enables direct analysis of simple analytic expressions representing the most important features in a given task. Further, we show how this approach provides an extremely low dimensional classifier with a minimum set of features representing %effective discriminating physically relevant observables and how it consequently speeds up the algorithm execution, with relatively close performance to the algorithm using the full information.