Abstract:Over the last years, online reviews became very important since they can influence the purchase decision of consumers and the reputation of businesses, therefore, the practice of writing fake reviews can have severe consequences on customers and service providers. Various approaches have been proposed for detecting opinion spam in online reviews, especially based on supervised classifiers. In this contribution, we start from a set of effective features used for classifying opinion spam and we re-engineered them, by considering the Cumulative Relative Frequency Distribution of each feature. By an experimental evaluation carried out on real data from Yelp.com, we show that the use of the distributional features is able to improve the performances of classifiers.
Abstract:In everyday life it happens that a person has to reason about what other people think and how they behave, in order to achieve his goals. In other words, an individual may be required to adapt his behaviour by reasoning about the others' mental state. In this paper we focus on a knowledge representation language derived from logic programming which both supports the representation of mental states of individual communities and provides each with the capability of reasoning about others' mental states and acting accordingly. The proposed semantics is shown to be translatable into stable model semantics of logic programs with aggregates.
Abstract:The paper proposes a new knowledge representation language, called DLP<, which extends disjunctive logic programming (with strong negation) by inheritance. The addition of inheritance enhances the knowledge modeling features of the language providing a natural representation of default reasoning with exceptions. A declarative model-theoretic semantics of DLP< is provided, which is shown to generalize the Answer Set Semantics of disjunctive logic programs. The knowledge modeling features of the language are illustrated by encoding classical nonmonotonic problems in DLP<. The complexity of DLP< is analyzed, proving that inheritance does not cause any computational overhead, as reasoning in DLP< has exactly the same complexity as reasoning in disjunctive logic programming. This is confirmed by the existence of an efficient translation from DLP< to plain disjunctive logic programming. Using this translation, an advanced KR system supporting the DLP< language has been implemented on top of the DLV system and has subsequently been integrated into DLV.