Abstract:This paper presents our recent initiatives to foster the discoverability of new releases on the music streaming service Deezer. After introducing our search and recommendation features dedicated to new releases, we outline our shift from editorial to personalized release suggestions using cold start embeddings and contextual bandits. Backed by online experiments, we discuss the advantages of this shift in terms of recommendation quality and exposure of new releases on the service.
Abstract:The music streaming service Deezer extensively relies on its Flow algorithm, which generates personalized radio-style playlists of songs, to help users discover musical content. Nonetheless, despite promising results over the past years, Flow used to ignore the moods of users when providing recommendations. In this paper, we present Flow Moods, an improved version of Flow that addresses this limitation. Flow Moods leverages collaborative filtering, audio content analysis, and mood annotations from professional music curators to generate personalized mood-specific playlists at scale. We detail the motivations, the development, and the deployment of this system on Deezer. Since its release in 2021, Flow Moods has been recommending music by moods to millions of users every day.