Montefiore Institute, University of Liège, Liège, Belgium
Abstract:With the emergence of massively parallel processing units, parallelization has become a desirable property for new sequence models. The ability to parallelize the processing of sequences with respect to the sequence length during training is one of the main factors behind the uprising of the Transformer architecture. However, Transformers lack efficiency at sequence generation, as they need to reprocess all past timesteps at every generation step. Recently, state-space models (SSMs) emerged as a more efficient alternative. These new kinds of recurrent neural networks (RNNs) keep the efficient update of the RNNs while gaining parallelization by getting rid of nonlinear dynamics (or recurrence). SSMs can reach state-of-the art performance through the efficient training of potentially very large networks, but still suffer from limited representation capabilities. In particular, SSMs cannot exhibit persistent memory, or the capacity of retaining information for an infinite duration, because of their monostability. In this paper, we introduce a new family of RNNs, the memory recurrent units (MRUs), that combine the persistent memory capabilities of nonlinear RNNs with the parallelizable computations of SSMs. These units leverage multistability as a source of persistent memory, while getting rid of transient dynamics for efficient computations. We then derive a specific implementation as proof-of-concept: the bistable memory recurrent unit (BMRU). This new RNN is compatible with the parallel scan algorithm. We show that BMRU achieves good results in tasks with long-term dependencies, and can be combined with state-space models to create hybrid networks that are parallelizable and have transient dynamics as well as persistent memory.
Abstract:Spiking neural networks are a type of artificial neural networks in which communication between neurons is only made of events, also called spikes. This property allows neural networks to make asynchronous and sparse computations and therefore to drastically decrease energy consumption when run on specialized hardware. However, training such networks is known to be difficult, mainly due to the non-differentiability of the spike activation, which prevents the use of classical backpropagation. This is because state-of-the-art spiking neural networks are usually derived from biologically-inspired neuron models, to which are applied machine learning methods for training. Nowadays, research about spiking neural networks focuses on the design of training algorithms whose goal is to obtain networks that compete with their non-spiking version on specific tasks. In this paper, we attempt the symmetrical approach: we modify the dynamics of a well-known, easily trainable type of recurrent neural network to make it event-based. This new RNN cell, called the Spiking Recurrent Cell, therefore communicates using events, i.e. spikes, while being completely differentiable. Vanilla backpropagation can thus be used to train any network made of such RNN cell. We show that this new network can achieve performance comparable to other types of spiking networks in the MNIST benchmark and its variants, the Fashion-MNIST and the Neuromorphic-MNIST. Moreover, we show that this new cell makes the training of deep spiking networks achievable.