Abstract:In this paper, we study proof systems in the sense of Cook-Reckhow for problems that are higher in the polynomial hierarchy than coNP, in particular, #SAT and maxSAT. We start by explaining how the notion of Cook-Reckhow proof systems can be apply to these problems and show how one can twist existing languages in knowledge compilation such as decision DNNF so that they can be seen as proof systems for problems such as #SAT and maxSAT.
Abstract:We give a non-FPT lower bound on the size of structured decision DNNF and OBDD with decomposable AND-nodes representing CNF-formulas of bounded incidence treewidth. Both models are known to be of FPT size for CNFs of bounded primal treewidth. To the best of our knowledge this is the first parameterized separation of primal treewidth and incidence treewidth for knowledge compilation models.
Abstract:Two main techniques have been used so far to solve the #P-hard problem #SAT. The first one, used in practice, is based on an extension of DPLL for model counting called exhaustive DPLL. The second approach, more theoretical, exploits the structure of the input to compute the number of satisfying assignments by usually using a dynamic programming scheme on a decomposition of the formula. In this paper, we make a first step toward the separation of these two techniques by exhibiting a family of formulas that can be solved in polynomial time with the first technique but needs an exponential time with the second one. We show this by observing that both techniques implicitely construct a very specific boolean circuit equivalent to the input formula. We then show that every beta-acyclic formula can be represented by a polynomial size circuit corresponding to the first method and exhibit a family of beta-acyclic formulas which cannot be represented by polynomial size circuits corresponding to the second method. This result shed a new light on the complexity of #SAT and related problems on beta-acyclic formulas. As a byproduct, we give new handy tools to design algorithms on beta-acyclic hypergraphs.
Abstract:We extend the knowledge about so-called structural restrictions of $\mathrm{\#SAT}$ by giving a polynomial time algorithm for $\beta$-acyclic $\mathrm{\#SAT}$. In contrast to previous algorithms in the area, our algorithm does not proceed by dynamic programming but works along an elimination order, solving a weighted version of constraint satisfaction. Moreover, we give evidence that this deviation from more standard algorithm is not a coincidence, but that there is likely no dynamic programming algorithm of the usual style for $\beta$-acyclic $\mathrm{\#SAT}$.
Abstract:We show that the propositional model counting problem #SAT for CNF- formulas with hypergraphs that allow a disjoint branches decomposition can be solved in polynomial time. We show that this class of hypergraphs is incomparable to hypergraphs of bounded incidence cliquewidth which were the biggest class of hypergraphs for which #SAT was known to be solvable in polynomial time so far. Furthermore, we present a polynomial time algorithm that computes a disjoint branches decomposition of a given hypergraph if it exists and rejects otherwise. Finally, we show that some slight extensions of the class of hypergraphs with disjoint branches decompositions lead to intractable #SAT, leaving open how to generalize the counting result of this paper.