Abstract:Over-the-Air (OTA) software updates are becoming essential for electric/electronic vehicle architectures in order to reduce recalls amid the increasing software bugs and vulnerabilities. Current OTA update architectures rely heavily on direct cellular repository-to-vehicle links, which makes the repository a communication bottleneck, and increases the cellular bandwidth utilization cost as well as the software download latency. In this paper, we introduce ScalOTA, an end-to-end scalable OTA software update architecture and secure protocol for modern vehicles. For the first time, we propose using a network of update stations, as part of Electric Vehicle charging stations, to boost the download speed through these stations, and reduce the cellular bandwidth overhead significantly. Our formalized OTA update protocol ensures proven end-to-end chain-of-trust including all stakeholders: manufacturer, suppliers, update stations, and all layers of in-vehicle Electric Control Units (ECUs). The empirical evaluation shows that ScalOTA reduces the bandwidth utilization and download latency up to an order of magnitude compared with current OTA update systems.
Abstract:Receiving timely and relevant security information is crucial for maintaining a high-security level on an IT infrastructure. This information can be extracted from Open Source Intelligence published daily by users, security organisations, and researchers. In particular, Twitter has become an information hub for obtaining cutting-edge information about many subjects, including cybersecurity. This work proposes SYNAPSE, a Twitter-based streaming threat monitor that generates a continuously updated summary of the threat landscape related to a monitored infrastructure. Its tweet-processing pipeline is composed of filtering, feature extraction, binary classification, an innovative clustering strategy, and generation of Indicators of Compromise (IoCs). A quantitative evaluation considering all tweets from 80 accounts over more than 8 months (over 195.000 tweets), shows that our approach timely and successfully finds the majority of security-related tweets concerning an example IT infrastructure (true positive rate above 90%), incorrectly selects a small number of tweets as relevant (false positive rate under 10%), and summarises the results to very few IoCs per day. A qualitative evaluation of the IoCs generated by SYNAPSE demonstrates their relevance (based on the CVSS score and the availability of patches or exploits), and timeliness (based on threat disclosure dates from NVD).
Abstract:To be prepared against cyberattacks, most organizations resort to security information and event management systems to monitor their infrastructures. These systems depend on the timeliness and relevance of the latest updates, patches and threats provided by cyberthreat intelligence feeds. Open source intelligence platforms, namely social media networks such as Twitter, are capable of aggregating a vast amount of cybersecurity-related sources. To process such information streams, we require scalable and efficient tools capable of identifying and summarizing relevant information for specified assets. This paper presents the processing pipeline of a novel tool that uses deep neural networks to process cybersecurity information received from Twitter. A convolutional neural network identifies tweets containing security-related information relevant to assets in an IT infrastructure. Then, a bidirectional long short-term memory network extracts named entities from these tweets to form a security alert or to fill an indicator of compromise. The proposed pipeline achieves an average 94% true positive rate and 91% true negative rate for the classification task and an average F1-score of 92% for the named entity recognition task, across three case study infrastructures.