Abstract:Knowledge sharing about emerging threats is crucial in the rapidly advancing field of cybersecurity and forms the foundation of Cyber Threat Intelligence. In this context, Large Language Models are becoming increasingly significant in the field of cybersecurity, presenting a wide range of opportunities. This study explores the capability of chatbots such as ChatGPT, GPT4all, Dolly,Stanford Alpaca, Alpaca-LoRA, and Falcon to identify cybersecurity-related text within Open Source Intelligence. We assess the capabilities of existing chatbot models for Natural Language Processing tasks. We consider binary classification and Named Entity Recognition as tasks. This study analyzes well-established data collected from Twitter, derived from previous research efforts. Regarding cybersecurity binary classification, Chatbot GPT-4 as a commercial model achieved an acceptable F1-score of 0.94, and the open-source GPT4all model achieved an F1-score of 0.90. However, concerning cybersecurity entity recognition, chatbot models have limitations and are less effective. This study demonstrates the capability of these chatbots only for specific tasks, such as cybersecurity binary classification, while highlighting the need for further refinement in other tasks, such as Named Entity Recognition tasks.
Abstract:The VEDLIoT project aims to develop energy-efficient Deep Learning methodologies for distributed Artificial Intelligence of Things (AIoT) applications. During our project, we propose a holistic approach that focuses on optimizing algorithms while addressing safety and security challenges inherent to AIoT systems. The foundation of this approach lies in a modular and scalable cognitive IoT hardware platform, which leverages microserver technology to enable users to configure the hardware to meet the requirements of a diverse array of applications. Heterogeneous computing is used to boost performance and energy efficiency. In addition, the full spectrum of hardware accelerators is integrated, providing specialized ASICs as well as FPGAs for reconfigurable computing. The project's contributions span across trusted computing, remote attestation, and secure execution environments, with the ultimate goal of facilitating the design and deployment of robust and efficient AIoT systems. The overall architecture is validated on use-cases ranging from Smart Home to Automotive and Industrial IoT appliances. Ten additional use cases are integrated via an open call, broadening the range of application areas.
Abstract:Receiving timely and relevant security information is crucial for maintaining a high-security level on an IT infrastructure. This information can be extracted from Open Source Intelligence published daily by users, security organisations, and researchers. In particular, Twitter has become an information hub for obtaining cutting-edge information about many subjects, including cybersecurity. This work proposes SYNAPSE, a Twitter-based streaming threat monitor that generates a continuously updated summary of the threat landscape related to a monitored infrastructure. Its tweet-processing pipeline is composed of filtering, feature extraction, binary classification, an innovative clustering strategy, and generation of Indicators of Compromise (IoCs). A quantitative evaluation considering all tweets from 80 accounts over more than 8 months (over 195.000 tweets), shows that our approach timely and successfully finds the majority of security-related tweets concerning an example IT infrastructure (true positive rate above 90%), incorrectly selects a small number of tweets as relevant (false positive rate under 10%), and summarises the results to very few IoCs per day. A qualitative evaluation of the IoCs generated by SYNAPSE demonstrates their relevance (based on the CVSS score and the availability of patches or exploits), and timeliness (based on threat disclosure dates from NVD).
Abstract:To be prepared against cyberattacks, most organizations resort to security information and event management systems to monitor their infrastructures. These systems depend on the timeliness and relevance of the latest updates, patches and threats provided by cyberthreat intelligence feeds. Open source intelligence platforms, namely social media networks such as Twitter, are capable of aggregating a vast amount of cybersecurity-related sources. To process such information streams, we require scalable and efficient tools capable of identifying and summarizing relevant information for specified assets. This paper presents the processing pipeline of a novel tool that uses deep neural networks to process cybersecurity information received from Twitter. A convolutional neural network identifies tweets containing security-related information relevant to assets in an IT infrastructure. Then, a bidirectional long short-term memory network extracts named entities from these tweets to form a security alert or to fill an indicator of compromise. The proposed pipeline achieves an average 94% true positive rate and 91% true negative rate for the classification task and an average F1-score of 92% for the named entity recognition task, across three case study infrastructures.