Abstract:Underwater video analysis is particularly challenging due to factors such as low lighting, color distortion, and turbidity, which compromise visual data quality and directly impact the performance of perception modules in robotic applications. This work proposes AquaFeat+, a plug-and-play pipeline designed to enhance features specifically for automated vision tasks, rather than for human perceptual quality. The architecture includes modules for color correction, hierarchical feature enhancement, and an adaptive residual output, which are trained end-to-end and guided directly by the loss function of the final application. Trained and evaluated in the FishTrack23 dataset, AquaFeat+ achieves significant improvements in object detection, classification, and tracking metrics, validating its effectiveness for enhancing perception tasks in underwater robotic applications.
Abstract:Activities in underwater environments are paramount in several scenarios, which drives the continuous development of underwater image enhancement techniques. A major challenge in this domain is the depth at which images are captured, with increasing depth resulting in a darker environment. Most existing methods for underwater image enhancement focus on noise removal and color adjustment, with few works dedicated to brightness enhancement. This work introduces a novel unsupervised learning approach to underwater image enhancement using a diffusion model. Our method, called UDBE, is based on conditional diffusion to maintain the brightness details of the unpaired input images. The input image is combined with a color map and a Signal-Noise Relation map (SNR) to ensure stable training and prevent color distortion in the output images. The results demonstrate that our approach achieves an impressive accuracy rate in the datasets UIEB, SUIM and RUIE, well-established underwater image benchmarks. Additionally, the experiments validate the robustness of our approach, regarding the image quality metrics PSNR, SSIM, UIQM, and UISM, indicating the good performance of the brightness enhancement process. The source code is available here: https://github.com/gusanagy/UDBE.