Abstract:Parallel batch processing machines have extensive applications in the semiconductor manufacturing process. However, the problem models in previous studies regard parallel batch processing as a fixed processing stage in the machining process. This study generalizes the problem model, in which users can arbitrarily set certain stages as parallel batch processing stages according to their needs. A Hybrid Flow Shop Scheduling Problem with Parallel Batch Processing Machines (PBHFSP) is solved in this paper. Furthermore, an Adaptive Knowledge-based Multi-Objective Evolutionary Algorithm (AMOEA/D) is designed to simultaneously optimize both makespan and Total Energy Consumption (TEC). Firstly, a hybrid initialization strategy with heuristic rules based on knowledge of PBHFSP is proposed to generate promising solutions. Secondly, the disjunctive graph model has been established based on the knowledge to find the critical-path of PBHFS. Then, a critical-path based neighborhood search is proposed to enhance the exploitation ability of AMOEA/D. Moreover, the search time is adaptively adjusted based on learning experience from Q-learning and Decay Law. Afterward, to enhance the exploration capability of the algorithm, AMOEA/D designs an improved population updating strategy with a weight vector updating strategy. These strategies rematch individuals with weight vectors, thereby maintaining the diversity of the population. Finally, the proposed algorithm is compared with state-of-the-art algorithms. The experimental results show that the AMOEA/D is superior to the comparison algorithms in solving the PBHFSP.
Abstract:In a flexible job shop environment, using Automated Guided Vehicles (AGVs) to transport jobs and process materials is an important way to promote the intelligence of the workshop. Compared with single-load AGVs, multi-load AGVs can improve AGV utilization, reduce path conflicts, etc. Therefore, this study proposes a history-guided regional partitioning algorithm (HRPEO) for the flexible job shop scheduling problem with limited multi-load AGVs (FJSPMA). First, the encoding and decoding rules are designed according to the characteristics of multi-load AGVs, and then the initialization rule based on the branch and bound method is used to generate the initial population. Second, to prevent the algorithm from falling into a local optimum, the algorithm adopts a regional partitioning strategy. This strategy divides the solution space into multiple regions and measures the potential of the regions. After that, cluster the regions into multiple clusters in each iteration, and selects individuals for evolutionary search based on the set of clusters. Third, a local search strategy is designed to improve the exploitation ability of the algorithm, which uses a greedy approach to optimize machines selection and transportation sequence according to the characteristics of FJSPMA. Finally, a large number of experiments are carried out on the benchmarks to test the performance of the algorithm. Compared with multiple advanced algorithms, the results show that the HRPEO has a better advantage in solving FJSPMA.