Abstract:When prompted to think step-by-step, language models (LMs) produce a chain of thought (CoT), a sequence of reasoning steps that the model supposedly used to produce its prediction. However, despite much work on CoT prompting, it is unclear if CoT reasoning is faithful to the models' parameteric beliefs. We introduce a framework for measuring parametric faithfulness of generated reasoning, and propose Faithfulness by Unlearning Reasoning steps (FUR), an instance of this framework. FUR erases information contained in reasoning steps from model parameters. We perform experiments unlearning CoTs of four LMs prompted on four multi-choice question answering (MCQA) datasets. Our experiments show that FUR is frequently able to change the underlying models' prediction by unlearning key steps, indicating when a CoT is parametrically faithful. Further analysis shows that CoTs generated by models post-unlearning support different answers, hinting at a deeper effect of unlearning. Importantly, CoT steps identified as important by FUR do not align well with human notions of plausbility, emphasizing the need for specialized alignment
Abstract:Is explainability a false promise? This debate has emerged from the insufficient evidence that explanations aid people in situations they are introduced for. More human-centered, application-grounded evaluations of explanations are needed to settle this. Yet, with no established guidelines for such studies in NLP, researchers accustomed to standardized proxy evaluations must discover appropriate measurements, tasks, datasets, and sensible models for human-AI teams in their studies. To help with this, we first review fitting existing metrics. We then establish requirements for datasets to be suitable for application-grounded evaluations. Among over 50 datasets available for explainability research in NLP, we find that 4 meet our criteria. By finetuning Flan-T5-3B, we demonstrate the importance of reassessing the state of the art to form and study human-AI teams. Finally, we present the exemplar studies of human-AI decision-making for one of the identified suitable tasks -- verifying the correctness of a legal claim given a contract.