Abstract:This paper presents a floating robot capable of performing physically interactive tasks in unstructured environments with human-like dexterity under human supervision. The robot consists of a humanoid torso attached to a hexacopter. A two-degree-of-freedom head and two five-degree-of-freedom arms equipped with softhands provide the requisite dexterity to allow human operators to carry out various tasks. A robust tendon-driven structure is purposefully designed for the arms, considerably reducing the impact of arm inertia on the floating base in motion. In addition, tendons provide flexibility to the joints, which enhances the robustness of the arm preventing damage in interaction with the environment. To increase the payload of the aerial system and the battery life, we use the concept of Suspended Aerial Manipulation, i.e., the flying humanoid can be connected with a tether to a structure, e.g., a larger airborne carrier or a supporting crane. Importantly, to maximize portability and applicability, we adopt a modular approach exploiting commercial components for the drone hardware and autopilot, while developing a whole-body outer control loop to stabilize the robot attitude, compensating for the tether force and for the humanoid head and arm motions. The humanoid can be controlled by a remote operator, thus effectively realizing a Suspended Aerial Manipulation Avatar. The proposed system is validated through experiments in indoor scenarios reproducing post-disaster tasks.