Abstract:Autonomous vehicles require road information for their operation, usually in form of HD maps. Since offline maps eventually become outdated or may only be partially available, online HD map construction methods have been proposed to infer map information from live sensor data. A key issue remains how to exploit such partial or outdated map information as a prior. We introduce M3TR (Multi-Masking Map Transformer), a generalist approach for HD map construction both with and without map priors. We address shortcomings in ground truth generation for Argoverse 2 and nuScenes and propose the first realistic scenarios with semantically diverse map priors. Examining various query designs, we use an improved method for integrating prior map elements into a HD map construction model, increasing performance by +4.3 mAP. Finally, we show that training across all prior scenarios yields a single Generalist model, whose performance is on par with previous Expert models that can handle only one specific type of map prior. M3TR thus is the first model capable of leveraging variable map priors, making it suitable for real-world deployment. Code is available at https://github.com/immel-f/m3tr
Abstract:Using HD maps directly as training data for machine learning tasks has seen a massive surge in popularity and shown promising results, e.g. in the field of map perception. Despite that, a standardized HD map framework supporting all parts of map-based automated driving and training label generation from map data does not exist. Furthermore, feeding map perception models with map data as part of the input during real-time inference is not addressed by the research community. In order to fill this gap, we presentlanelet2_ml_converter, an integrated extension to the HD map framework Lanelet2, widely used in automated driving systems by academia and industry. With this addition Lanelet2 unifies map based automated driving, machine learning inference and training, all from a single source of map data and format. Requirements for a unified framework are analyzed and the implementation of these requirements is described. The usability of labels in state of the art machine learning is demonstrated with application examples from the field of map perception. The source code is available embedded in the Lanelet2 framework under https://github.com/fzi-forschungszentrum-informatik/Lanelet2/tree/feature_ml_converter
Abstract:High Definition (HD) maps are necessary for many applications of automated driving (AD), but their manual creation and maintenance is very costly. Vehicle fleet data from series production vehicles can be used to automatically generate HD maps, but the data is often incomplete and noisy. We propose a system for the generation of HD maps from vehicle fleet data, which is tolerant to missing or misclassified detections and can handle drives with multiple routes, generating a single complete map, model-free and without prior reference lines. Using randomly selected drives as pivot drives, a step-wise lateral sampling of detections is performed. These sampled points are then clustered and aligned using Expectation Maximization (EM), estimating a lateral offset for each drive to compensate localization errors. The clustered points are replaced with the maxima of their probability density function (PDF) and connected to form polylines using a modified rectangular linear assignment algorithm. The data from vehicles on varying routes is then fused into a hierarchical singular map graph. The proposed approach achieves an average accuracy below 0.5 meters compared to a hand annotated ground truth map, as well as correctly resolving lane splits and merges, proving the feasibility of the use of vehicle fleet data for the generation of highway HD maps.