Cindy
Abstract:Distributed multiple-input multiple-output (D\mbox{-}MIMO) is a promising technology to realize the promise of massive MIMO gains by fiber-connecting the distributed antenna arrays, thereby overcoming the form factor limitations of co-located MIMO. In this paper, we introduce the concept of mobile D-MIMO (MD-MIMO) network, a further extension of the D-MIMO technology where distributed antenna arrays are connected to the base station with a wireless link allowing all radio network nodes to be mobile. This approach significantly improves deployment flexibility and reduces operating costs, enabling the network to adapt to the highly dynamic nature of next-generation (NextG) networks. We discuss use cases, system design, network architecture, and the key enabling technologies for MD-MIMO. Furthermore, we investigate a case study of MD-MIMO for vehicular networks, presenting detailed performance evaluations for both downlink and uplink. The results show that an MD-MIMO network can provide substantial improvements in network throughput and reliability.
Abstract:This work investigates the potential of 5G and beyond sidelink (SL) communication to support multi-hop tactical networks. We first provide a technical and historical overview of 3GPP SL standardization activities, and then consider applications to current problems of interest in tactical networking. We consider a number of multi-hop routing techniques which are expected to be of interest for SL-enabled multi-hop tactical networking and examine open-source tools useful for network emulation. Finally, we discuss relevant research directions which may be of interest for 5G SL-enabled tactical communications, namely the integration of RF sensing and positioning, as well as emerging machine learning tools such as federated and decentralized learning, which may be of great interest for resource allocation and routing problems that arise in tactical applications. We conclude by summarizing recent developments in the 5G SL literature and provide guidelines for future research.