Abstract:This work provides a comparative analysis illustrating how Deep Learning (DL) surpasses Machine Learning (ML) in addressing tasks within Internet of Things (IoT), such as attack classification and device-type identification. Our approach involves training and evaluating a DL model using a range of diverse IoT-related datasets, allowing us to gain valuable insights into how adaptable and practical these models can be when confronted with various IoT configurations. We initially convert the unstructured network traffic data from IoT networks, stored in PCAP files, into images by processing the packet data. This conversion process adapts the data to meet the criteria of DL classification methods. The experiments showcase the ability of DL to surpass the constraints tied to manually engineered features, achieving superior results in attack detection and maintaining comparable outcomes in device-type identification. Additionally, a notable feature extraction time difference becomes evident in the experiments: traditional methods require around 29 milliseconds per data packet, while DL accomplishes the same task in just 2.9 milliseconds. The significant time gap, DL's superior performance, and the recognized limitations of manually engineered features, presents a compelling call to action within the IoT community. This encourages us to shift from exploring new IoT features for each dataset to addressing the challenges of integrating DL into IoT, making it a more efficient solution for real-world IoT scenarios.