Abstract:By organizing knowledge within a research field, Systematic Reviews (SR) provide valuable leads to steer research. Evidence suggests that SRs have become first-class artifacts in software engineering. However, the tedious manual effort associated with the screening phase of SRs renders these studies a costly and error-prone endeavor. While screening has traditionally been considered not amenable to automation, the advent of generative AI-driven chatbots, backed with large language models is set to disrupt the field. In this report, we propose an approach to leverage these novel technological developments for automating the screening of SRs. We assess the consistency, classification performance, and generalizability of ChatGPT in screening articles for SRs and compare these figures with those of traditional classifiers used in SR automation. Our results indicate that ChatGPT is a viable option to automate the SR processes, but requires careful considerations from developers when integrating ChatGPT into their SR tools.
Abstract:The design of conceptually sound metamodels that embody proper semantics in relation to the application domain is particularly tedious in Model-Driven Engineering. As metamodels define complex relationships between domain concepts, it is crucial for a modeler to define these concepts thoroughly while being consistent with respect to the application domain. We propose an approach to assist a modeler in the design of a metamodel by recommending relevant domain concepts in several modeling scenarios. Our approach does not require to extract knowledge from the domain or to hand-design completion rules. Instead, we design a fully data-driven approach using a deep learning model that is able to abstract domain concepts by learning from both structural and lexical metamodel properties in a corpus of thousands of independent metamodels. We evaluate our approach on a test set containing 166 metamodels, unseen during the model training, with more than 5000 test samples. Our preliminary results show that the trained model is able to provide accurate top-$5$ lists of relevant recommendations for concept renaming scenarios. Although promising, the results are less compelling for the scenario of the iterative construction of the metamodel, in part because of the conservative strategy we use to evaluate the recommendations.