Abstract:Despite recent surge of interest in deploying colon capsule endoscopy (CCE) for early diagnosis of colorectal diseases, there remains a large gap between the current state of CCE in clinical practice, and the state of its counterpart optical colonoscopy (OC). Our study is aimed at closing this gap, by focusing on the full integration of AI in CCE's pathway, where image processing steps linked to the detection, localization and characterisation of important findings are carried out autonomously using various AI algorithms. We developed a recognition network, that with an impressive sensitivity of 99.9%, a specificity of 99.4%, and a negative predictive value (NPV) of 99.8%, detected colorectal polyps. After recognising a polyp within a sequence of images, only those images containing polyps were fed into two parallel independent networks for characterisation, and estimation of the size of those important findings. The characterisation network reached a sensitivity of 82% and a specificity of 80% in classifying polyps to two groups, namely neoplastic vs. non-neoplastic. The size estimation network reached an accuracy of 88% in correctly segmenting the polyps. By automatically incorporating this crucial information into CCE's pathway, we moved a step closer towards the full integration of AI in CCE's routine clinical practice.
Abstract:Machine unlearning has garnered significant attention due to its ability to selectively erase knowledge obtained from specific training data samples in an already trained machine learning model. This capability enables data holders to adhere strictly to data protection regulations. However, existing unlearning techniques face practical constraints, often causing performance degradation, demanding brief fine-tuning post unlearning, and requiring significant storage. In response, this paper introduces a novel class of machine unlearning algorithms. First method is partial amnesiac unlearning, integration of layer-wise pruning with amnesiac unlearning. In this method, updates made to the model during training are pruned and stored, subsequently used to forget specific data from trained model. The second method assimilates layer-wise partial-updates into label-flipping and optimization-based unlearning to mitigate the adverse effects of data deletion on model efficacy. Through a detailed experimental evaluation, we showcase the effectiveness of proposed unlearning methods. Experimental results highlight that the partial amnesiac unlearning not only preserves model efficacy but also eliminates the necessity for brief post fine-tuning, unlike conventional amnesiac unlearning. Moreover, employing layer-wise partial updates in label-flipping and optimization-based unlearning techniques demonstrates superiority in preserving model efficacy compared to their naive counterparts.