Abstract:In this work, the online printing shop scheduling problem introduced in (Lunardi et al., Mixed Integer Linear Programming and Constraint Programming Models for the Online Printing Shop Scheduling Problem, Computers & Operations Research, to appear) is considered. This challenging real scheduling problem, that emerged in the nowadays printing industry, corresponds to a flexible job shop scheduling problem with sequencing flexibility; and it presents several complicating specificities such as resumable operations, periods of unavailability of the machines, sequence-dependent setup times, partial overlapping between operations with precedence constraints, and fixed operations, among others. A local search strategy and metaheuristic approaches for the problem are proposed and evaluated. Based on a common representation scheme, trajectory and populational metaheuristics are considered. Extensive numerical experiments with large-sized instances show that the proposed methods are suitable for solving practical instances of the problem; and that they outperform a half-heuristic-half-exact off-the-shelf solver by a large extent. Numerical experiments with classical instances of the flexible job shop scheduling problem show that the introduced methods are also competitive when applied to this particular case.