Abstract:Learning from demonstration (LfD) techniques seek to enable novice users to teach robots novel tasks in the real world. However, prior work has shown that robot-centric LfD approaches, such as Dataset Aggregation (DAgger), do not perform well with human teachers. DAgger requires a human demonstrator to provide corrective feedback to the learner either in real-time, which can result in degraded performance due to suboptimal human labels, or in a post hoc manner which is time intensive and often not feasible. To address this problem, we present Mutual Information-driven Meta-learning from Demonstration (MIND MELD), which meta-learns a mapping from poor quality human labels to predicted ground truth labels, thereby improving upon the performance of prior LfD approaches for DAgger-based training. The key to our approach for improving upon suboptimal feedback is mutual information maximization via variational inference. Our approach learns a meaningful, personalized embedding via variational inference which informs the mapping from human provided labels to predicted ground truth labels. We demonstrate our framework in a synthetic domain and in a human-subjects experiment, illustrating that our approach improves upon the corrective labels provided by a human demonstrator by 63%.