Abstract:Automatic player identification is an essential and complex task in sports video analysis. Different strategies have been devised over the years, but identification based on jersey numbers is one of the most common approaches given its versatility and relative simplicity. However, automatic detection of jersey numbers is still challenging due to changing camera angles, low video resolution, small object size in wide-range shots and transient changes in the player's posture and movement. In this paper we present a novel approach for jersey number identification in a small, highly imbalanced dataset from the Seattle Seahawks practice videos. Our results indicate that simple models can achieve an acceptable performance on the jersey number detection task and that synthetic data can improve the performance dramatically (accuracy increase of ~9% overall, ~18% on low frequency numbers) making our approach achieve state of the art results.