Abstract:Unobserved confounding is a fundamental obstacle to establishing valid causal conclusions from observational data. Two complementary types of approaches have been developed to address this obstacle. An extensive line of work is based on taking advantage of fortuitous external aids (such as the presence of an instrumental variable or other proxy), along with additional assumptions to ensure identification. A recent line of work of proximal causal inference (Miao et al., 2018a) has aimed to provide a novel approach to using proxies to deal with unobserved confounding without relying on stringent parametric assumptions. On the other hand, a complete characterization of identifiability of a large class of causal parameters in arbitrary causal models with hidden variables has been developed using the language of graphical models, resulting in the ID algorithm and related extensions (Tian and Pearl, 2002; Shpitser and Pearl, 2006a,b). Celebrated special cases of this approach, such as the front-door model, are able to obtain non-parametric identification in seemingly counter-intuitive situations when a treatment and an outcome share an arbitrarily complicated unobserved common cause. In this paper we aim to develop a synthesis of the proximal and graphical approaches to identification in causal inference to yield the most general identification algorithm in multi- variate systems currently known - the proximal ID algorithm. In addition to being able to obtain non-parametric identification in all cases where the ID algorithm succeeds, our approach allows us to systematically exploit proxies to adjust for the presence of unobserved confounders that would have otherwise prevented identification. In addition, we outline a class of estimation strategies for causal parameters identified by our method in an important special case. We illustration our approach by simulation studies.
Abstract:This brief note is meant to complement our previous comment on "The Blessings of Multiple Causes" by Wang and Blei (2019). We provide a more succinct and transparent explanation of the fact that the deconfounder does not control for multi-cause confounding. The argument given in Wang and Blei (2019) makes two mistakes: (1) attempting to infer independence conditional on one variable from independence conditional on a different, unrelated variable, and (2) attempting to infer joint independence from pairwise independence. We give two simple counterexamples to the deconfounder claim.
Abstract:(This comment has been updated to respond to Wang and Blei's rejoinder [arXiv:1910.07320].) The premise of the deconfounder method proposed in "Blessings of Multiple Causes" by Wang and Blei [arXiv:1805.06826], namely that a variable that renders multiple causes conditionally independent also controls for unmeasured multi-cause confounding, is incorrect. This can be seen by noting that no fact about the observed data alone can be informative about ignorability, since ignorability is compatible with any observed data distribution. Methods to control for unmeasured confounding may be valid with additional assumptions in specific settings, but they cannot, in general, provide a checkable approach to causal inference, and they do not, in general, require weaker assumptions than the assumptions that are commonly used for causal inference. While this is outside the scope of this comment, we note that much recent work on applying ideas from latent variable modeling to causal inference problems suffers from similar issues.