Abstract:Up-to-date network telemetry is the key enabler for resource optimization by a variety of means including capacity scaling, fault recovery, network reconfiguration. Reliable optical performance monitoring in general and specifically the monitoring of the spectral profile of WDM signals in fixed- and flex-grid architecture across the entire C-band remains challenging. This article describes a spectrometer circuit architecture along with an original data processing algorithm that combined can measure the spectrum quantitatively across the entire C-band aiming at 1 GHz resolution bandwidth. The circuit is composed of a scanning ring resonator followed by a parallel arrangement of AWGs with interlaced channel spectra. The comb of ring resonances provides the high resolution and the algorithm creates a virtual tuneable AWG that isolates individual resonances of the comb within the flat pass-band of its synthesized channels. The parallel arrangement of AWGs may be replaced by a time multiplexed multi-input port AWG. The feasibility of a ring resonator functioning over whole C-band is experimentally validated. Full tuning of the comb of resonances over a free spectral range is achieved with a high-resolution bandwidth of 1.30 GHz. Due to its maturity and low loss, CMOS compatible silicon nitride is chosen for integration. Additionally, the whole system demonstration is presented using industry standard simulation tool. The architecture is robust to fabrication process variations owing to its data processing approach.