Abstract:Dynamic hand gestures play a crucial role in conveying nonverbal information for Human-Robot Interaction (HRI), eliminating the need for complex interfaces. Current models for dynamic gesture recognition suffer from limitations in effective recognition range, restricting their application to close proximity scenarios. In this letter, we present a novel approach to recognizing dynamic gestures in an ultra-range distance of up to 28 meters, enabling natural, directive communication for guiding robots in both indoor and outdoor environments. Our proposed SlowFast-Transformer (SFT) model effectively integrates the SlowFast architecture with Transformer layers to efficiently process and classify gesture sequences captured at ultra-range distances, overcoming challenges of low resolution and environmental noise. We further introduce a distance-weighted loss function shown to enhance learning and improve model robustness at varying distances. Our model demonstrates significant performance improvement over state-of-the-art gesture recognition frameworks, achieving a recognition accuracy of 95.1% on a diverse dataset with challenging ultra-range gestures. This enables robots to react appropriately to human commands from a far distance, providing an essential enhancement in HRI, especially in scenarios requiring seamless and natural interaction.
Abstract:This paper presents a novel approach for ultra-range gesture recognition, addressing Human-Robot Interaction (HRI) challenges over extended distances. By leveraging human gestures in video data, we propose the Temporal-Spatiotemporal Fusion Network (TSFN) model that surpasses the limitations of current methods, enabling robots to understand gestures from long distances. With applications in service robots, search and rescue operations, and drone-based interactions, our approach enhances HRI in expansive environments. Experimental validation demonstrates significant advancements in gesture recognition accuracy, particularly in prolonged gesture sequences.
Abstract:Dynamic gestures enable the transfer of directive information to a robot. Moreover, the ability of a robot to recognize them from a long distance makes communication more effective and practical. However, current state-of-the-art models for dynamic gestures exhibit limitations in recognition distance, typically achieving effective performance only within a few meters. In this work, we propose a model for recognizing dynamic gestures from a long distance of up to 20 meters. The model integrates the SlowFast and Transformer architectures (SFT) to effectively process and classify complex gesture sequences captured in video frames. SFT demonstrates superior performance over existing models.