Abstract:This paper presents a novel approach for ultra-range gesture recognition, addressing Human-Robot Interaction (HRI) challenges over extended distances. By leveraging human gestures in video data, we propose the Temporal-Spatiotemporal Fusion Network (TSFN) model that surpasses the limitations of current methods, enabling robots to understand gestures from long distances. With applications in service robots, search and rescue operations, and drone-based interactions, our approach enhances HRI in expansive environments. Experimental validation demonstrates significant advancements in gesture recognition accuracy, particularly in prolonged gesture sequences.
Abstract:Dynamic gestures enable the transfer of directive information to a robot. Moreover, the ability of a robot to recognize them from a long distance makes communication more effective and practical. However, current state-of-the-art models for dynamic gestures exhibit limitations in recognition distance, typically achieving effective performance only within a few meters. In this work, we propose a model for recognizing dynamic gestures from a long distance of up to 20 meters. The model integrates the SlowFast and Transformer architectures (SFT) to effectively process and classify complex gesture sequences captured in video frames. SFT demonstrates superior performance over existing models.