Abstract:Full integration of robots into real-life applications necessitates their ability to interpret and execute natural language directives from untrained users. Given the inherent variability in human language, equivalent directives may be phrased differently, yet require consistent robot behavior. While Large Language Models (LLMs) have advanced language understanding, they often falter in handling user phrasing variability, rely on predefined commands, and exhibit unpredictable outputs. This letter introduces the Directive Language Model (DLM), a novel speech-to-trajectory framework that directly maps verbal commands to executable motion trajectories, bypassing predefined phrases. DLM utilizes Behavior Cloning (BC) on simulated demonstrations of human-guided robot motion. To enhance generalization, GPT-based semantic augmentation generates diverse paraphrases of training commands, labeled with the same motion trajectory. DLM further incorporates a diffusion policy-based trajectory generation for adaptive motion refinement and stochastic sampling. In contrast to LLM-based methods, DLM ensures consistent, predictable motion without extensive prompt engineering, facilitating real-time robotic guidance. As DLM learns from trajectory data, it is embodiment-agnostic, enabling deployment across diverse robotic platforms. Experimental results demonstrate DLM's improved command generalization, reduced dependence on structured phrasing, and achievement of human-like motion.
Abstract:Dynamic hand gestures play a crucial role in conveying nonverbal information for Human-Robot Interaction (HRI), eliminating the need for complex interfaces. Current models for dynamic gesture recognition suffer from limitations in effective recognition range, restricting their application to close proximity scenarios. In this letter, we present a novel approach to recognizing dynamic gestures in an ultra-range distance of up to 28 meters, enabling natural, directive communication for guiding robots in both indoor and outdoor environments. Our proposed SlowFast-Transformer (SFT) model effectively integrates the SlowFast architecture with Transformer layers to efficiently process and classify gesture sequences captured at ultra-range distances, overcoming challenges of low resolution and environmental noise. We further introduce a distance-weighted loss function shown to enhance learning and improve model robustness at varying distances. Our model demonstrates significant performance improvement over state-of-the-art gesture recognition frameworks, achieving a recognition accuracy of 95.1% on a diverse dataset with challenging ultra-range gestures. This enables robots to react appropriately to human commands from a far distance, providing an essential enhancement in HRI, especially in scenarios requiring seamless and natural interaction.
Abstract:This paper presents a novel approach for ultra-range gesture recognition, addressing Human-Robot Interaction (HRI) challenges over extended distances. By leveraging human gestures in video data, we propose the Temporal-Spatiotemporal Fusion Network (TSFN) model that surpasses the limitations of current methods, enabling robots to understand gestures from long distances. With applications in service robots, search and rescue operations, and drone-based interactions, our approach enhances HRI in expansive environments. Experimental validation demonstrates significant advancements in gesture recognition accuracy, particularly in prolonged gesture sequences.
Abstract:Dynamic gestures enable the transfer of directive information to a robot. Moreover, the ability of a robot to recognize them from a long distance makes communication more effective and practical. However, current state-of-the-art models for dynamic gestures exhibit limitations in recognition distance, typically achieving effective performance only within a few meters. In this work, we propose a model for recognizing dynamic gestures from a long distance of up to 20 meters. The model integrates the SlowFast and Transformer architectures (SFT) to effectively process and classify complex gesture sequences captured in video frames. SFT demonstrates superior performance over existing models.
Abstract:Object recognition, commonly performed by a camera, is a fundamental requirement for robots to complete complex tasks. Some tasks require recognizing objects far from the robot's camera. A challenging example is Ultra-Range Gesture Recognition (URGR) in human-robot interaction where the user exhibits directive gestures at a distance of up to 25~m from the robot. However, training a model to recognize hardly visible objects located in ultra-range requires an exhaustive collection of a significant amount of labeled samples. The generation of synthetic training datasets is a recent solution to the lack of real-world data, while unable to properly replicate the realistic visual characteristics of distant objects in images. In this letter, we propose the Diffusion in Ultra-Range (DUR) framework based on a Diffusion model to generate labeled images of distant objects in various scenes. The DUR generator receives a desired distance and class (e.g., gesture) and outputs a corresponding synthetic image. We apply DUR to train a URGR model with directive gestures in which fine details of the gesturing hand are challenging to distinguish. DUR is compared to other types of generative models showcasing superiority both in fidelity and in recognition success rate when training a URGR model. More importantly, training a DUR model on a limited amount of real data and then using it to generate synthetic data for training a URGR model outperforms directly training the URGR model on real data. The synthetic-based URGR model is also demonstrated in gesture-based direction of a ground robot.
Abstract:Hand gestures play a significant role in human interactions where non-verbal intentions, thoughts and commands are conveyed. In Human-Robot Interaction (HRI), hand gestures offer a similar and efficient medium for conveying clear and rapid directives to a robotic agent. However, state-of-the-art vision-based methods for gesture recognition have been shown to be effective only up to a user-camera distance of seven meters. Such a short distance range limits practical HRI with, for example, service robots, search and rescue robots and drones. In this work, we address the Ultra-Range Gesture Recognition (URGR) problem by aiming for a recognition distance of up to 25 meters and in the context of HRI. We propose a novel deep-learning framework for URGR using solely a simple RGB camera. First, a novel super-resolution model termed HQ-Net is used to enhance the low-resolution image of the user. Then, we propose a novel URGR classifier termed Graph Vision Transformer (GViT) which takes the enhanced image as input. GViT combines the benefits of a Graph Convolutional Network (GCN) and a modified Vision Transformer (ViT). Evaluation of the proposed framework over diverse test data yields a high recognition rate of 98.1%. The framework has also exhibited superior performance compared to human recognition in ultra-range distances. With the framework, we analyze and demonstrate the performance of an autonomous quadruped robot directed by human gestures in complex ultra-range indoor and outdoor environments.
Abstract:In communication between humans, gestures are often preferred or complementary to verbal expression since the former offers better spatial referral. Finger pointing gesture conveys vital information regarding some point of interest in the environment. In human-robot interaction, a user can easily direct a robot to a target location, for example, in search and rescue or factory assistance. State-of-the-art approaches for visual pointing estimation often rely on depth cameras, are limited to indoor environments and provide discrete predictions between limited targets. In this paper, we explore the learning of models for robots to understand pointing directives in various indoor and outdoor environments solely based on a single RGB camera. A novel framework is proposed which includes a designated model termed PointingNet. PointingNet recognizes the occurrence of pointing followed by approximating the position and direction of the index finger. The model relies on a novel segmentation model for masking any lifted arm. While state-of-the-art human pose estimation models provide poor pointing angle estimation accuracy of 28deg, PointingNet exhibits mean accuracy of less than 2deg. With the pointing information, the target is computed followed by planning and motion of the robot. The framework is evaluated on two robotic systems yielding accurate target reaching.