Abstract:To detect infected wounds in Diabetic Foot Ulcers (DFUs) from photographs, preventing severe complications and amputations. Methods: This paper proposes the Guided Conditional Diffusion Classifier (ConDiff), a novel deep-learning infection detection model that combines guided image synthesis with a denoising diffusion model and distance-based classification. The process involves (1) generating guided conditional synthetic images by injecting Gaussian noise to a guide image, followed by denoising the noise-perturbed image through a reverse diffusion process, conditioned on infection status and (2) classifying infections based on the minimum Euclidean distance between synthesized images and the original guide image in embedding space. Results: ConDiff demonstrated superior performance with an accuracy of 83% and an F1-score of 0.858, outperforming state-of-the-art models by at least 3%. The use of a triplet loss function reduces overfitting in the distance-based classifier. Conclusions: ConDiff not only enhances diagnostic accuracy for DFU infections but also pioneers the use of generative discriminative models for detailed medical image analysis, offering a promising approach for improving patient outcomes.
Abstract:Transfer learning has been widely used in natural language processing through deep pretrained language models, such as Bidirectional Encoder Representations from Transformers and Universal Sentence Encoder. Despite the great success, language models get overfitted when applied to small datasets and are prone to forgetting when fine-tuned with a classifier. To remedy this problem of forgetting in transferring deep pretrained language models from one domain to another domain, existing efforts explore fine-tuning methods to forget less. We propose DeepEmotex an effective sequential transfer learning method to detect emotion in text. To avoid forgetting problem, the fine-tuning step is instrumented by a large amount of emotion-labeled data collected from Twitter. We conduct an experimental study using both curated Twitter data sets and benchmark data sets. DeepEmotex models achieve over 91% accuracy for multi-class emotion classification on test dataset. We evaluate the performance of the fine-tuned DeepEmotex models in classifying emotion in EmoInt and Stimulus benchmark datasets. The models correctly classify emotion in 73% of the instances in the benchmark datasets. The proposed DeepEmotex-BERT model outperforms Bi-LSTM result on the benchmark datasets by 23%. We also study the effect of the size of the fine-tuning dataset on the accuracy of our models. Our evaluation results show that fine-tuning with a large set of emotion-labeled data improves both the robustness and effectiveness of the resulting target task model.