Abstract:In this paper we give the first efficient algorithms for the $k$-center problem on dynamic graphs undergoing edge updates. In this problem, the goal is to partition the input into $k$ sets by choosing $k$ centers such that the maximum distance from any data point to the closest center is minimized. It is known that it is NP-hard to get a better than $2$ approximation for this problem. While in many applications the input may naturally be modeled as a graph, all prior works on $k$-center problem in dynamic settings are on metrics. In this paper, we give a deterministic decremental $(2+\epsilon)$-approximation algorithm and a randomized incremental $(4+\epsilon)$-approximation algorithm, both with amortized update time $kn^{o(1)}$ for weighted graphs. Moreover, we show a reduction that leads to a fully dynamic $(2+\epsilon)$-approximation algorithm for the $k$-center problem, with worst-case update time that is within a factor $k$ of the state-of-the-art upper bound for maintaining $(1+\epsilon)$-approximate single-source distances in graphs. Matching this bound is a natural goalpost because the approximate distances of each vertex to its center can be used to maintain a $(2+\epsilon)$-approximation of the graph diameter and the fastest known algorithms for such a diameter approximation also rely on maintaining approximate single-source distances.
Abstract:Complex networked systems in fields such as physics, biology, and social sciences often involve interactions that extend beyond simple pairwise ones. Hypergraphs serve as powerful modeling tools for describing and analyzing the intricate behaviors of systems with multi-body interactions. Herein, we investigate a discrete-time nonlinear averaging dynamics with three-body interactions: an underlying hypergraph, comprising triples as hyperedges, delineates the structure of these interactions, while the vertices update their states through a weighted, state-dependent average of neighboring pairs' states. This dynamics captures reinforcing group effects, such as peer pressure, and exhibits higher-order dynamical effects resulting from a complex interplay between initial states, hypergraph topology, and nonlinearity of the update. Differently from linear averaging dynamics on graphs with two-body interactions, this model does not converge to the average of the initial states but rather induces a shift. By assuming random initial states and by making some regularity and density assumptions on the hypergraph, we prove that the dynamics converges to a multiplicatively-shifted average of the initial states, with high probability. We further characterize the shift as a function of two parameters describing the initial state and interaction strength, as well as the convergence time as a function of the hypergraph structure.