Abstract:Given points from an arbitrary metric space and a sequence of point updates sent by an adversary, what is the minimum recourse per update (i.e., the minimum number of changes needed to the set of centers after an update), in order to maintain a constant-factor approximation to a $k$-clustering problem? This question has received attention in recent years under the name consistent clustering. Previous works by Lattanzi and Vassilvitskii [ICLM '17] and Fichtenberger, Lattanzi, Norouzi-Fard, and Svensson [SODA '21] studied $k$-clustering objectives, including the $k$-center and the $k$-median objectives, under only point insertions. In this paper we study the $k$-center objective in the fully dynamic setting, where the update is either a point insertion or a point deletion. Before our work, {\L}\k{a}cki, Haeupler, Grunau, Rozho\v{n}, and Jayaram [SODA '24] gave a deterministic fully dynamic constant-factor approximation algorithm for the $k$-center objective with worst-case recourse of $2$ per update. In this work, we prove that the $k$-center clustering problem admits optimal recourse bounds by developing a deterministic fully dynamic constant-factor approximation algorithm with worst-case recourse of $1$ per update. Moreover our algorithm performs simple choices based on light data structures, and thus is arguably more direct and faster than the previous one which uses a sophisticated combinatorial structure. Additionally, we develop a new deterministic decremental algorithm and a new deterministic incremental algorithm, both of which maintain a $6$-approximate $k$-center solution with worst-case recourse of $1$ per update. Our incremental algorithm improves over the $8$-approximation algorithm by Charikar, Chekuri, Feder, and Motwani [STOC '97]. Finally, we remark that since all three of our algorithms are deterministic, they work against an adaptive adversary.
Abstract:In this paper we give the first efficient algorithms for the $k$-center problem on dynamic graphs undergoing edge updates. In this problem, the goal is to partition the input into $k$ sets by choosing $k$ centers such that the maximum distance from any data point to the closest center is minimized. It is known that it is NP-hard to get a better than $2$ approximation for this problem. While in many applications the input may naturally be modeled as a graph, all prior works on $k$-center problem in dynamic settings are on metrics. In this paper, we give a deterministic decremental $(2+\epsilon)$-approximation algorithm and a randomized incremental $(4+\epsilon)$-approximation algorithm, both with amortized update time $kn^{o(1)}$ for weighted graphs. Moreover, we show a reduction that leads to a fully dynamic $(2+\epsilon)$-approximation algorithm for the $k$-center problem, with worst-case update time that is within a factor $k$ of the state-of-the-art upper bound for maintaining $(1+\epsilon)$-approximate single-source distances in graphs. Matching this bound is a natural goalpost because the approximate distances of each vertex to its center can be used to maintain a $(2+\epsilon)$-approximation of the graph diameter and the fastest known algorithms for such a diameter approximation also rely on maintaining approximate single-source distances.