Abstract:We show that training deep neural networks (DNNs) with absolute value activation and arbitrary input dimension can be formulated as equivalent convex Lasso problems with novel features expressed using geometric algebra. This formulation reveals geometric structures encoding symmetry in neural networks. Using the equivalent Lasso form of DNNs, we formally prove a fundamental distinction between deep and shallow networks: deep networks inherently favor symmetric structures in their fitted functions, with greater depth enabling multilevel symmetries, i.e., symmetries within symmetries. Moreover, Lasso features represent distances to hyperplanes that are reflected across training points. These reflection hyperplanes are spanned by training data and are orthogonal to optimal weight vectors. Numerical experiments support theory and demonstrate theoretically predicted features when training networks using embeddings generated by Large Language Models.
Abstract:We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2-layer networks with piecewise linear activations, deep narrow ReLU networks with up to 4 layers, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in ReLU networks, a fourth layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.